Synthesis of Controllers for Constrained Systems

M. V. Kothare
Chemical Process Modeling and Control Research Center
Department of Chemical Engineering
Lehigh University, Bethlehem, PA 18015, U.S.A.

NSF Workshop on
“Mathematical Modeling and Control of Plasmas in Magnetic Fusion”
May 10-12, 2006
San Diego, CA
Chemical Process Modeling and Control Center
www.lehigh.edu/~inpmc

Center Co-Directors: M. V. Kothare
W. L. Luyben

Administrative Associate: Joan Decker

Collaborating Faculty: H. Caram (CHE, Lehigh)
J. Hsu (CHE, Lehigh)
E. Schuster (ME, Lehigh)
M. Arnold (CSE, Lehigh)
W. E. Schiesser (CHE, Lehigh)
M. K. Hatalis (ECE, Lehigh)
Current Support Structure for the Center

Liason members:
- Air Products and Chemical Inc.
- Petrobras, Brazil

Industrial Projects:
- Praxair
- Consolidated Edison Company of NY
- Pittsburgh Digital Greenhouse
- IBM

Federal/PA Projects:
- National Science Foundation
- Sandia National Laboratories
- PITA

Other:
- Rossin Endowment, Hook Professorship
- McCann Professorship
Current Research Projects

Control of Periodic/Cyclic Systems: PSA, bio-rhythm, SMB

Hardware Embedded MPC: Controller on chip technology

Distributed Micro-chemical Systems: Micro/nano systems

Model Predictive Control: Nonlinear, robust, repetitive

Abnormal Systems Diagnosis: Identification of sleep disorders

Agile Plant Start-Up and Operation

Design and Control in Retrofit Projects

Robust Operation through Redesign

Boiler Control Systems in Power Plants
Research Program
M. V. Kothare

Graduate Students: L. Bleris, S. Mukherjee, M. Medgaarden, P. Tiwari, P. Vouzis
Graduated Students: E. F. Mulder (Ph.D., 2003), L. Ozkan (Ph.D., 2003),
S. V. Karnik (Ph.D., 2003), Z. Wan (Ph.D., 2003), A. Pattekar

Systems and control
Control of microreactors
Microchemical Systems

Theory
• LMIs, SDP
• nonlinear MPC
• multi-model/switched control
• constrained control

Software
• efficient robust MPC
• efficient nonlinear MPC
• anti-windup synthesis

Applications
• benchmark CSTR control
• solution co-polymerization control
• steam generator level control
• load following in pressure swing adsorption (PSA)

Mathematical modeling
• microfluidic models
• reduced order models
• computation/software

Dynamics and control
• distributed controllability/observability
• distributed boundary control formulation
• choice of inputs/measurements
• robustness/impact on design

Prototyping/demonstration
• microfabrication
• microfuel processing
• micro-packed bed reactors

Microchemical sensors

Microchemical Systems
• microchemical sensors

Chemical Process Modeling and Control Research Center
• practical relevance
• graduate/undergraduate internships

Pittsburgh Digital Greenhouse
• industrial/practical relevance

Sandia National Laboratories
• microfabrication
• computational sci. & math. program
• graduate/undergraduate internships

Collaborators
• M. Arnold (CSE, Lehigh)
• M. Hatalis (EE, Lehigh)
• L. Biegler (CHE, Carnegie Mellon)
Microchemical Systems Research

Miniature Fuel Processor for H_2 delivery in micro-fuel cells

Experiments
- Catalytic reforming microreactor
- Hybrid microreactor/separator
- Integration of resistive heaters
- Microfluidic interfacing

Theory
- Microfluidic transport modeling
- Optimization of microsystem
- Dynamic analysis/feedback control
- Systems level integration

Computation
Simulation using Computational Fluid Dynamics (CFD)
Background:
Linear Matrix Inequalities (LMIs)

\[\text{F(x)} = F_0 + x_1 F_1 + \ldots + x_p F_p > 0 \]

- \(x \in \mathbb{R}^p \) is the variable
- \(F_i = F_i^T \) are given matrices
- \(F(x) > 0 \implies F \) is positive-definite

LMIs are convex constraints on \(x \)

\[F(x) > 0, \quad F(y) > 0 \]

\[\implies F(\lambda x + (1 - \lambda)y) = \lambda F(x) + (1 - \lambda)F(y) > 0 \]

for all \(\lambda \in [0,1] \)
Typical LMI problems

Feasibility: Find \(x \in \mathbb{R}^n \) such that \(F(x) \geq 0 \)

or show that none exists

Linear objective minimization:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad F(x) \geq 0
\end{align*}
\]

These are all convex problems
Significance of LMI problems

- No “analytic solution”
- Global solution “computable” efficiently

Implication:
Reducing a problem to LMI problem ⟷ solving it

Analogy:
Reducing a problem to linear program (LP) ⟷ solving it
Many problems in systems and control can be cast as LMI problems. Some of them were intractable in their original form.

- Lyapunov-based controller synthesis
- multi-criterion controller synthesis
- optimal filtering problems

See
(1) Boyd et al. (1994), *Linear Matrix Inequalities in Systems & Control*, SIAM.
(2) Gahinet et al. (1995), *MATLAB LMI Toolbox*.
Long History of LMI’s

Aleksandr M Lyapunov

• Born: June 6, 1857
• Died Nov 3, 1918
• Friend of Markov
• Student of Chebyshev
• Lyapunov method, 1899
 • Stability of ODE’s
Lyapunov Stability

Given an ODE: \[\dot{x} = f(x) \]

\[V = g(x) \]

Such That: \[V > 0, \quad \forall x \neq 0 \]
\[\dot{V} < 0, \quad \forall x \neq 0 \]
\[V = 0 \rightarrow x = 0 \]
Lyapunov Stability

Example

\[
\dot{x} = Ax
\]

Lyapunov

\[
V(x) = x^T P x > 0
\]

\[
\dot{V}(x) = x^T A^T P x + x^T P A x < 0
\]

LMI

\[
P > 0
\]

\[
A^T P + P A < 0
\]
What are Bilinear Matrix Inequalities?

\[F(x,y) = F_0 + x_1 y_1 F_1 + \ldots + x_p y_p F_p > 0 \]

- \(x \) and \(y \) are the variables
- \(F_i = F_i^T \) are given matrices
- \(F > 0 \) means all eigenvalues > 0

Standard Problem

\[
\min c^T x \text{ subject to } F(x) > 0
\]
Significance of BMIs

- BMIs are nonconvex constraints
- Solutions are computable
 - Locally via gradient search methods
 - Globally via branch and bound
- In general, BMI significantly more difficult to solve
- No existing commercial software

Many problems in systems and control can be cast as BMIs
Outline

- Constraints in practice
- Approaches to handling constraints
- Anti-windup analysis and synthesis
- A Framework for Design of Scheduled Output Feedback MPC
- Local Convex Robust Solution with Scheduling
- Example
- Conclusions
Motivation

- Linear Control Theory: PID, IMC, H_∞, H_2
- Nonlinear Control Theory: gain scheduling, nonlinear H_∞
 feedback linearization, sliding mode

Constraints on u and y ignored
Detrimental Effect of Constraints

- Chernobyl 1986 nuclear explosion
 - cooling water constraints
- YF22 aircraft crash (April 1992)
 - constraints on control surface moves
- Gripen JAS 39 aircraft (August 1993)

Constraints → Limits on controller performance
Constraint Resolution through Overdesign

- Make valves larger
- Install higher capacity compressor

Impractical due to high cost

Economic feasibility Operation at constraints
Approaches to Handling Constraints

Linear Plant Model

- Model Predictive Control
- Anti-windup Control
- Nonlinear Stabilization

Nonlinear Plant Model

- Local linearization + linear methods with gain scheduling
- Feedback linearization + linear methods
- Geometric nonlinear and adaptive methods
What is Anti-Windup Control?

• **Step 1**: Design linear controller ignoring constraints

\[r \rightarrow K(s) \rightarrow u \rightarrow \hat{u} \rightarrow P(s) \rightarrow y \]

• **Step 2**: Add anti-windup compensation

\[r \rightarrow K(s) \rightarrow u \rightarrow \hat{u} \rightarrow P(s) \rightarrow y \]

\[\rightarrow R(s) \rightarrow \hat{u} \rightarrow P(s) \rightarrow y \]
Anti-Reset Windup
Anti-windup Internal Model Control

Without constraints

With constraints
Conditioning, anti-windup and bumpless transfer

Figure 1. Discrete-time reset integrator anti-windup compensator corresponding to (3.1). This configuration can be reduced to Fig. 4.

Figure 2. Hammerstein Structure for Saturating System

Figure 4. Incremental controller form I followed by an anti-windup compensated integrator. Only the integrator state is anti-windup compensated.

Figure 5. Incremental controller form II. The anti-windup is imposed on both the integrator state and the differentiator filter state.
• Which technique for which scenario?
• Extension to multivariable processes?
• Stability and robustness guarantees?

⇒ Need fresh and general approach
Two new parameters Λ_1, Λ_2

General Framework

Kothare et al. (1994), Automatica

\[\dot{x} =Ax + B e + \Lambda_1(\hat{u} - u) \]
\[u = C x + D e + \Lambda_2(\hat{u} - u) \]
Unification of Existing Anti-Windup Schemes

Kothare et al. (1994), Automatica

- Anti-Windup in a general setting
- Parameterization in terms of Λ_1, Λ_2

All existing anti-windup schemes can be recovered as special cases for particular choices of Λ_1, Λ_2
Anti-Windup Stability Analysis
Kothare, Morari (1999), Automatica

- Analysis of specific anti-windup schemes
 - describing functions
 - Popov, Circle, Off-Axis Circle criterion
 - small gain theorem

Need to address anti-windup stability in a general multivariable setting
Passivity Theorem: Assume all $\gamma \in \mathbb{N}$ are passive, i.e.,

$$\langle x_T | \gamma x_T \rangle \geq d \| x_T \|^2 + e, \text{ for all } x \in L_{2e}$$

Then, feedback interconnection is stable for all $\gamma \in \mathbb{N}$ if $M(s)$ is strictly passive and stable.

- \textbf{Conservative!! Properties of }\gamma \text{ not incorporated}
- \textbf{Can use multipliers to reduce conservatism}
Multiplier Theory

- \(W_+(s), W_-(s) \) exist, are stable, proper with stable proper inverses
- \(W_-(s)^{-T} M(s) W_+(s) \) is stable, strictly passive
- \(W_+(s)^{-1} \) ? \(W_-(s)^T \) is passive for all \(? \in \mathbb{N} \)

\[u_1 \xrightarrow{W_+(s)^{-1}} W_+(s) \xrightarrow{\ ? \ } W_-(s)^T \xrightarrow{?^{-1}} W_-(s)^{-T} \xrightarrow{u_2} \]

System is stable for all \(? \in \mathbb{N} \)

Properties of \(? \) influence choices of \(W_+, W_- \)
Passivity using Linear Matrix Inequalities

Brocket, Willems (1965), Willems (1971), Anderson (1973)

System\[\frac{dx}{dt} = Ax(t) + Bu(t)\]
\[y(t) = Cx(t) + Du(t)\]

is strictly passive if and only if
\[H(j\omega) + H(-j\omega)^* \geq dI, \text{ for } \omega \text{ all } \in \mathbb{R}\]

Equivalent to existence of \(P=P^T, d > 0\) such that
\[
\begin{bmatrix}
A^TP + PA & PB - C^T \\
B^TP - C & dI - (D + D^T)
\end{bmatrix} \leq 0
\]

Convex Linear Matrix Inequality in \(P, d\)
Anti-Windup Stability Analysis

Kothare, Morari (1999), Automatica

- Saturation \(\hat{\text{u}} \) is static odd monotonic nonlinearity
- Corresponding multiplier characterization (Zames, Falb (1968))
 \[
 (I - W(j \omega)) M(j \omega) + M(j \omega)^*(I - W(j \omega)^*) \geq d I
 \]
- \(W = \text{diagonal}(W_1, W_2, \ldots, W_{nu}) \)
 \[
 W_i(j \omega) = \int_{-\infty}^{\infty} w_i(t) \exp(-j \omega t) \, dt, \quad \int_{-\infty}^{\infty} |w_i(t)| < 1
 \]
 \[
 w_i(t) \geq 0 \quad \text{for all} \ t.
 \]
- Stability condition and condition on \(w_i(t) \) translate to LMIs.
Anti-Windup Stability Analysis
Kothare, Morari (1999), Automatica

• The analysis tools:
 • Passivity Theorem
 • Multiplier Theory
 • Linear Matrix Inequalities (LMIs)

• Resulting stability conditions:
 • are least conservative
 • are convex and computationally tractable
 • generalize all previous stability conditions
Anti-Windup Synthesis as an LMI
Mulder et al. (2001), Automatica

The Synthesis Problem

“Unfortunately, it has been established that the optimal reduced order control design problem [static anti windup] CANNOT be formulated as such a convex LMI problem.”

Anti-Windup Synthesis as an LMI

Mulder et al. (2001) Automatica

Stability Criterion
• suitable multiplier criterion

Performance Objective
• suitable gain function

LMI SYNTHESIS for \(\Lambda_1, \Lambda_2 \)
Anti-Windup LMI Synthesis
Mulder et al. (2001), Automatica

Minimize Γ

$$\begin{bmatrix}
QA^T + AQ & B_w & B_v M - B_\xi X + QC_u^T & QC_z^T & 0 \\
B_w^T & -\Gamma & D_{uw}^T & D_{zw}^T & 0 \\
MB_v^T - X^TB_\xi^T + C_u Q & D_{uw}^T & -2M + D_{uw} M + M D_{uv}^T - D_{u_\xi} X - X^T D_{u_\xi}^T & M D_{zv}^T - X^T D_{z_\xi}^T & M \\
C_z Q & D_{zw} & D_{zv} M - D_{z_\xi} X & -\gamma^1 & 0 \\
0 & 0 & 0 & M & -\delta I \\
\end{bmatrix} < 0$$

$Q > 0 \hspace{1cm} M > 0 \hspace{1cm} \Gamma > 0 \hspace{1cm} \delta > 0 \hspace{1cm} X > 0$

Standard LMI Eigenvalue Problem

Solution: $\Lambda = XM^{-1}$
Anti-Windup LMI Synthesis
Mulder et al. (2001), Automatica

First successful attempt to develop a convex LMI-based solution to the Static Anti-windup Controller Synthesis Problem
Model Predictive Control (MPC)

- Reference input
- State estimate
- Manipulated variable
- Control horizon
- Prediction horizon
- Projected outputs
- Targets
On-line Optimization in MPC
(QP/LP – recently, MILP)

\[
\begin{align*}
\text{min} & \quad J_p(k) \\
\text{subject to} & \quad u_{\text{imin}} \leq u_i(k+j|k) \leq u_{\text{imax}} \\
& \quad x_{\text{imin}} \leq x_i(k+j|k) \leq x_{\text{imax}}
\end{align*}
\]

\[
J_p = \sum_{i=0}^{p} [x(k+i|k)^T Q_1 x(k+i|k) + u(k+i|k)^T R u(k+i|k)]
\]

- Physically meaningful objective \(J_p(k) \)
- Physically meaningful constraints
- Flexibility in model used to compute \(J_p(k) \)
Applications of Model Predictive Control

- Successfully applied in
 - chemical and petrochemical industries
 - paper and pulp industries
 - adhesive coating industries

- Reasons:
 - multivariable in nature
 - can use a variety of model forms directly
 - can handle constraints explicitly

Significant on-line computation unsuitable for fast processes
Nominal Stability of MPC

- Considered well-understood
- Well-known result (Rawlings, Muske (1993))

Take prediction horizon $p=\infty$
Then, feasibility of on-line MPC
\Rightarrow nominal stability
Robustness of MPC
(Kothare et al. (1996), Automatica)

Example: \[P(s) = \frac{k}{s(s + \alpha)} \]

-2 \leq u \leq 2

Model uncertainty: \[0.1 \leq \alpha \leq 10 \]

Nominal model: \(\alpha = 1 \)
Actual plant: \(\alpha = 9 \)

With \(p=\infty \), on-line feasibility \(\Rightarrow \) robust stability
Problem Statement

System: Discrete linear time-varying

\[x(k+1) = A(k)x(k) + B(k)u(k) \]

\[y(k) = Cx(k) \]

\([A(k) B(k)] \in \Omega = \text{uncertainty set}\)
Robust MPC Objective

Goal: At time k, synthesize $u(k+i|k) = Fx(k+i|k)$, $i \geq 0$ to minimize

$$\max_{[A(k+i) \ B(k+i)] \in \Omega} J_\infty$$

subject to

$$|u_r(k+i|k)| \leq u_{r,\text{max}}, \quad i \geq 0, \ r=1, \ldots, n_u$$
$$|y_q(k+i|k)| \leq y_{q,\text{max}}, \quad i \geq 1, \ q=1, \ldots, n_y$$

where

$$J_\infty = \sum_{i=0}^{\infty} [x(k+i|k)^\text{T}Q_1 \ x(k+i|k) + u(k+i|k)^\text{T}R \ u(k+i|k)],$$
Robust MPC using LMIs
Kothare et al. (1996), Automatica

\[\begin{align*}
\min & \quad \gamma \\
\begin{bmatrix}
1 & x(k|k)^T \\
x(k|k) & Q
\end{bmatrix} & \succeq 0 \\
\begin{bmatrix}
Q & QA_j^T + Y^T B_j^T & QQ_1^{1/2} & Y^T R_1^{1/2} \\
A_j Q + B_j Y & Q & 0 & 0 \\
Q_1^{1/2} Q & 0 & \gamma I & 0 \\
R_1^{1/2} Y & 0 & 0 & \gamma I
\end{bmatrix} & \succeq 0 \\
\end{align*} \]

\[j=1,\ldots,L \]

Controller gain \(F = Y Q^{-1} \)
Actuator Constraints

Invariant ellipsoid:
\[E = \{ x | x^T Q^{-1} x \leq 1 \} \]

- \(x(k|k) \in E \)
- \[x(k+i|k) \in E, \ i \geq 0 \]

Input constraints:
\[|u_r(k+i|k)| \leq u_{r, \text{max}}, \quad i \geq 0, \ r = 1, \ldots, n_u \]

\[\begin{bmatrix} X & Y \\ Y^T & Q \end{bmatrix} \succeq 0 \quad \text{with } X_{rr} \leq u_{r, \text{max}}^2 \]
Robustness of MPC

(Kothare et al. (1996), Automatica)

Example: \[P(s) = \frac{k}{s(s + \alpha)} \]

\[-2 \leq u \leq 2, \quad 0.1 \leq \alpha \leq 10 \]

on-line LMI feasibility \(\Rightarrow \) robust stability
Motivation: Efficient Nonlinear MPC

- Strongly nonlinear behavior with constraints
 - large operating region
 - transition between different local linear regimes

- Generic nonlinear MPC computationally demanding
 - Allgower et al., Mayne, Michalska, Mosca, Zheng,
 de Oliveira, Biegler, Kouvaritakis, Rawlings, Christofides, Magni,
 Mullary, Jadbabaie, etc.

- Typical approaches
 - Multiple shooting, reduced control horizon, reduced dimensionality, LTV approximation, hybrid switching, a priori CLF
Alternative: Gain Scheduling Predictive Controllers

Gain Scheduling (Leonessa et al, McConley et al.)
Problem Statement

Consider a nonlinear system:

\[
\dot{x} = f(x(t), u(t))
\]

or

\[
x(k+1) = f(x(k), u(k))
\]

Goal: Regulate the system to the desired equilibrium \((x_{ss}, u_{ss})\) transitioning through multiple operating regimes
Maximum Region of Stability

Invariant ellipsoid: \[E = \{ x | x^T Q^{-1} x \leq 1 \} \]

\[x(k|k) \in E \Rightarrow x(k+i|k) \in E, \; i \geq 0 \]

Problem 1

\[\max_{u(k)} \max_{x(k+i|k)} \quad \log \det (Q) \]

subject to

\[x(k+i|k) \in \Pi_x, \; u(k+i|k) \in \Pi_u, \; i \geq 0 \]

\[V(x(k+i|k)) - V(x(k+i+1|k)) > 0, \text{ with } V(x) = x^T Q^{-1} x, \; Q > 0 \]
∀ x(0) ∈ E, Problem 1 always feasible and $x(k) ∈ E$ for all $k ≥ 0$, $x(k) → 0$ as $k → ∞$.
Local LTV Representation of Nonlinear System

Around equilibrium surface \(S: \ x_{eq} = f(x_{eq}, u_{eq}) \),

\[
\begin{align*}
\Delta \\
\Delta
\end{align*}
\]

at \((x^{(1)}, u^{(1)}) \)

at \((x^{(i)}, u^{(i)}) \)

at \((x^{(0)}, u^{(0)}) \)

\[
\begin{align*}
Z^{-1} \ \\
Z^{-1}
\end{align*}
\]
Local Predictive Controller

Let $\Omega = \text{Co}\{[\frac{\partial g}{\partial x}, \frac{\partial g}{\partial u}]\}$

Off-line, for $\bar{x} \in \Pi_x$, $\bar{u} \in \Pi_u$, solve Problem 1, define

$$E = \{ \bar{x} \in \mathbb{R}^n \mid \bar{x}^T R^{-1} \bar{x} \leq 1 \}$$

On-line, for $\bar{x}(k) \in E$, solve Problem 2, apply

$$u(k) = F(k) (x(k) - x^{eq}) + u^{eq}$$
Design of Scheduled MPC

Wan, Kothare (2003, IJRNC)

1. Design MPC \#i at \((x^{eq(i)}, u^{eq(i)})\) with

\[
E^{(i)} = \{ x \in \mathbb{R}^n \mid (x - x^{eq(i)})^T (R^{(i)})^{-1} (x - x^{eq(i)}) \leq 1 \}
\]

2. Select \((x^{eq(i+1)}, u^{eq(i+1)}) \in E^{(i)}\). Let \(i:=i+1\), go to step 1.
Implementation of Scheduled MPC

Wan, Kothare (2003, IJRNC)

Given \(x(0) \in E^{(1)} \cup \ldots \cup E^{(M)} \).

At time \(k \), apply MPC \# i = \text{argmin } i, \text{ s.t. } x(k) \in E^{(i)}.

Or, once \(x(k) \in E^{(i+1)} \cap E^{(i)} \), switch from Controller \#(i+1) to \# i.
Example: Two-Tank system

Wan, Kothare (2003, IJRNC)

Example: A two-tank system

\[
\begin{align*}
\rho S_1 \dot{h}_1 &= -\rho A_1 \sqrt{2gh_1} + u \\
\rho S_2 \dot{h}_2 &= \rho A_1 \sqrt{2gh_1} - \rho A_2 \sqrt{2gh_2}
\end{align*}
\]

Let \(\bar{h}_1 = h_1 - h_1^{\text{eq}}, \bar{h}_2 = h_2 - h_2^{\text{eq}}, \bar{u} = u - u^{\text{eq}}, \)

\[
\begin{bmatrix}
\bar{h}_1(k + 1) \\
\bar{h}_2(k + 1)
\end{bmatrix} \in \left(0.5 \sum_{i=1}^{4} \alpha_i \Phi_i + I\right) \begin{bmatrix}
\bar{h}_1(k) \\
\bar{h}_2(k)
\end{bmatrix} + \begin{bmatrix}
0.5 \\
\frac{\rho A_1}{\rho A_1}
\end{bmatrix} \bar{u}
\]
Region of Stability of Scheduled MPC
State Responses

State Responses

t, (sec)

h_1, (cm)

h_2, (cm)

$0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \quad 400$

$0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120$

LEHIGH University
Local Observer Design

\[e(k+1) = f(x(k), u(k)) - f(x(k) - e(k), u(k)) - L_p (h(x(k)) - h(x(k) - e(k))) \]
Local Output Feedback MPC

![Diagram of Local Output Feedback MPC]

- **Reference Input**: \(r \)
- **State Feedback RMPC**:
 - \(x(k) \) to \(x(k+1) \)
 - \(u(k) \) to \(u(k) \)
 - \(z^{-1} \)
- **Observer**:
 - \(e(k) \) to \(e(k) \)
 - \(z^{-1} \)
- **Plant**:
 - \(u \) to \(y \)

Mathematical Formulas:

\[
\begin{align*}
\Delta & \quad \text{State feedback RMPC} \\
z^{-1} & \quad \text{Observer} \\
\end{align*}
\]
Stability Analysis

Closed-loop system

\[x(k+1) = f(x(k),u(k)) + (f(x(k),u(k)) - f(x(k),u(k)) \]
\[\quad \wedge \quad \wedge \]
\[x(k+1) = f(x(k),u(k)) + L_p(h(x(k)) - h(x(k))) \]

\[\forall k \geq 0, \ x(k), \hat{x}(k) \in \Pi_x \]
\[||d_1(k)||_R \leq \beta_1 ||e(k)||_p \]
\[||d_2(k)||_R \leq \beta_2 ||e(k)||_p \]

Output feedback MPC

asymptotically stable within \(\mathbb{E} \), if

\[x(0), \hat{x}(0) \in \mathbb{E}, \ ||e(0)||_p \leq \eta := \frac{1-\alpha}{\max\{\beta_1, \beta_2\}} \]
Observability Analysis

Auxiliary system

\[\tilde{x}(k+1) = f(\tilde{x}(k), u(k)), \tilde{x}(k-T) = \hat{x}(k-T) \]

\[\tilde{y}(k) = h(\tilde{x}(k)) \]

\[\|x(k) - \hat{x}(k)\|^2 \leq \frac{\rho^T V_T}{\mu} \]

\[V_T = \sum_{j=k-T}^{k} \|y(j) - \tilde{y}(j)\|^2 \]
Scheduled Output Feedback MPC

1. Design MPC \(i\) at \((x^{(i)}, u^{(i)})\) with \(E^{(i)}\)
2. Select \(x^{(i+1)} \in \theta E^{(i)}\). Let \(i:=i+1\), go to step 1.

3. At time \(k\), switch from MPC \(\#(i+1)\) to \(\# i\), if \(\hat{x}(k) \in \theta E^{(i)}\) and \(\|x(k)-\hat{x}(k)\|^2 \leq \frac{\rho^T V_T}{\mu} \leq \delta\) such that \(x(k) \in E^{(i)}\) and \(\|x(k)-\hat{x}(k)\|^2 \leq \eta^{(i)}\)
Example: CSTR

Example: CSTR with exothermic reaction

\[
\begin{align*}
\dot{C}_A &= \frac{q}{V} \left(C_{Af} - C_A \right) - k_0 \exp \left(- \frac{E}{RT} \right) C_A \\
\dot{T} &= \frac{q}{V} \left(T_f - T \right) + \frac{(- \Delta H)}{\rho C_p} k_0 \exp \left(- \frac{E}{RT} \right) C_A + \frac{UA}{V \rho C_p} \left(T_C - T \right)
\end{align*}
\]

Let \(\bar{C}_A = C_A - C_A^{eq}, \bar{T} = T - T^{eq}, \bar{u} = u - u^{eq}, \)

\[
\begin{bmatrix}
\bar{C}_A(k+1) \\
\bar{T}(k+1)
\end{bmatrix} \in \left(0.03 \sum_{i=1}^{4} \alpha_i \Phi_i + I \right) \begin{bmatrix}
\bar{C}_A(k) \\
\bar{T}(k)
\end{bmatrix} + \begin{bmatrix}
0 \\
\frac{UA}{V \rho C_p}
\end{bmatrix} \bar{T}_C
\]
Steady State Multiplicity
Example: CSTR (Scheduled MPC vs. NMPC)

<table>
<thead>
<tr>
<th>Scheduled output feedback MPC</th>
<th>Output feedback NMPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 sec</td>
<td>5 sec</td>
</tr>
</tbody>
</table>
Summary of Contributions

Scheduled State Feedback MPC
- characterized explicit region of local MPC stability
- expanded region of stability by multiple predictive controllers
- developed computationally efficient formulation

Scheduled Output Feedback MPC
- characterized local upper bound for state estimation error
- established switching criteria for scheduled output feedback MPC
- established a framework for scheduled output feedback MPC
Acknowledgments

Financial Support

- American Chemical Society’s Petroleum Research Fund
- Rossin Endowment, Hook Professorship
- McCann Professorship

Collaborators

M. Morari – ETH Zurich
V. Balakrishnan – Purdue U.
E. F. Mulder (2003, ExxonMobil)
Z. Wan (2003, GE)
P. Tiwari (current)