ME242 – MECHANICAL ENGINEERING SYSTEMS

LECTURE 1

Class Guidelines

ME242 – MECHANICAL ENGINEERING SYSTEMS

Time/Place: Room 102, Maginnes Hall
Session 1: Tu/Th 10:45-12:00

Instructor: Eugenio Schuster,
Office: Room 550D, Packard Lab,
Email: schuster@lehigh.edu,
Office hours: Wednesday 6-8PM

Webpage: http://www.lehigh.edu/~eus204/Teaching/ME242/ME242.html

E-mail list: Make sure to be in the mailing list!!!

Available at the Bookstore. We will cover partially Chapters 1 to 7.

Grader: Patrick Boyle
ME242 – MECHANICAL ENGINEERING SYSTEMS

Prerequisites: MECH102, MAT205, and previously or concurrently, ME231

MATH 205. Linear Methods
Linear differential equations and applications; matrices and
systems of linear equations; vector spaces; eigenvalues and
application to linear systems of differential equations.

MECH 102. Dynamics
Particle dynamics, work-energy, impulse-momentum, impact,
systems of particles; kinematics of rigid bodies, kinetics of rigid
bodies in plane motion, energy, momentum, eccentric impact.

ME 231. Fluid Mechanics
Kinematics of fluid flow and similarity concepts. Equations of
incompressible fluid flow with inviscid and viscous applications.
Turbulence. One-dimensional compressible flow, shock waves.
Boundary layers, separation, wakes and drag.

I will help you as we go by doing examples
which should refresh your memory

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework/Projects</td>
<td>20%</td>
</tr>
<tr>
<td>In-class Test 1</td>
<td>20%</td>
</tr>
<tr>
<td>In-class Test 2</td>
<td>20%</td>
</tr>
<tr>
<td>Final</td>
<td>40%</td>
</tr>
</tbody>
</table>

Score Letter Grade
92-100 A
90-91 A-
87-89 B+
82-86 B
80-81 B-
77-79 C+
72-75 C
70-71 C-
67-69 D+
62-66 D
60-61 D-
59-59 F

• A total of 100 points will be awarded as Numerical Grade
• A 100 Score corresponds to the top Numerical Grade of the class
• The students will be able to know their letter grades during the course computing their Scores based on their Numerical Grade as follows:

 Score = Scale Factor x Numerical Grade

• The Scale Factor will be computed by the instructor and posted in the web-page.
ME242 – MECHANICAL ENGINEERING SYSTEMS

Policies:

- There are **NO** make-up tests or assignments
- Procedures for the conduct of exams will be explicitly stated before the exams
- Assignments and exams must be your **own work!**
- Homework is due at the **beginning** of class on the due date
- **NOT ALL** the problems will be graded
- Grading problems → Grader → Instructor
- Solutions of **ALL** the problems on the web site
- Solutions have to be comprehensible to be marked highly
- Follow the **Homework Guidelines** posted in the web page

Engineering Design Process

![Diagram of the engineering design process]

Figure 1.1: The engineering design process
Problem Formulation

Stabilization of Inverted Pendulum

MECHANICAL SYSTEMS

MODELING

MATHEMATICAL REPRESENTATION
OF THE MECHANICAL SYSTEM

DYNAMIC MODEL
(first step in this design process)

MODELING: Modeling of mechanical / vibrational / electrical / thermal / fluid systems using lumped-parameter models via unified approach

Bond-Graphs

Dynamic Model

MECHANICAL SYSTEM: \(M = I \alpha \) Newton’s law

\[
I \alpha = -lmg \sin \theta - b \omega + T_c
\]

\(\omega = \dot{\theta} \) angular velocity

\(\alpha = \dot{\omega} = \ddot{\theta} \) angular acceleration

\(I = ml^2 \) moment of inertia

\[
\ddot{\theta} = -\frac{b}{ml^2} \dot{\theta} - \frac{g}{l} \sin \theta + \frac{T_c}{ml^2}
\]
Dynamic Model

\[\ddot{\theta} = -\frac{b}{ml^2} \dot{\theta} - \frac{g}{l} \sin(\theta) + \frac{T_c}{ml^2} \]

Equilibrium and Linearization

Which are the equilibrium points when \(T_c = 0 \)?

At equilibrium:

\[\dot{\theta} = \theta = 0 \Rightarrow 0 = -\frac{g}{l} \sin(\theta) \Rightarrow \theta = 0, \pi \]

What happens around \(\theta = \pi \)?

\[\theta = \pi + x \Rightarrow \ddot{x} = -\frac{b}{ml^2} \dot{x} - \frac{g}{l} \sin(\pi + x) + \frac{T_c}{ml^2} \Rightarrow \ddot{x} = -\frac{b}{ml^2} \dot{x} + \frac{g}{l} \sin(x) + \frac{T_c}{ml^2} \]

By Taylor Expansion:

\[\sin(x) = x + h.o.t. \Rightarrow \sin(x) \approx x \]

Linearized Equation:

\[\ddot{x} = -\frac{b}{ml^2} \dot{x} + \frac{g}{l} x + \frac{T_c}{ml^2} \]
Analysis

\(T_c = 0 \Rightarrow \ddot{x} + \frac{b}{ml^2} \dot{x} - \frac{g}{l} x = 0 \)
What is the solution \(x(t) \)?

Characteristic Equation

\[\lambda^2 + \frac{b}{ml^2} \lambda - \frac{g}{l} = 0 \Rightarrow \lambda_{1,2} = \frac{-\frac{b}{ml^2} \pm \sqrt{\left(\frac{b}{ml^2}\right)^2 + 4 \frac{g}{l}}}{2} \]

\(x(t) = Ae^{\lambda_1 t} + Be^{\lambda_2 t} \)

The dynamics of the system is given by \(\lambda_1 \) and \(\lambda_2 \)

\(\text{real}(\lambda_1, \lambda_2) > 0 \Rightarrow \text{INSTABILITY} \)

Model Representation

\[\ddot{x} = -\frac{b}{ml^2} \dot{x} + \frac{g}{l} x + \frac{T_c}{ml^2} \]
Reduce to first order equations:

State Variable Representation

\[\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\frac{b}{ml^2} x_2 + \frac{g}{l} x_1 + \frac{T_c}{ml^2} \end{aligned} \]

\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, u = T_c \Rightarrow \dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & -\frac{b}{ml^2} \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u = Ax + Bu \]

Model Representation → State Variables / Transfer Function

\[\text{eig}(A) = \{ \lambda : |\lambda I - A| = 0 \} = \left\{ \lambda : \lambda^2 + \frac{b}{ml^2} \lambda - \frac{g}{l} = 0 \right\} \]
Characteristic Equation

The dynamics of the system is given by the eigenvalues of the system matrix
Solution to the problem

\[
\dot{x} = \begin{bmatrix}
0 & \frac{1}{m} \\
\frac{b}{l} & -\frac{1}{ml^2}
\end{bmatrix} x + \begin{bmatrix}
0 \\
\frac{1}{ml^2}
\end{bmatrix} u = Ax + Bu
\]

\[
u = -Kx = -\begin{bmatrix} K_1 & K_2 \end{bmatrix} x \quad \text{Feedback Control}
\]

\[
\dot{x} = (A - BK)x = \begin{bmatrix}
\frac{g}{l} - \frac{1}{ml^2} K_1 & \frac{b}{ml^2} - \frac{1}{ml^2} K_2 \\
\end{bmatrix}
\]

We choose \(K_1 \) and \(K_2 \) to make \(\text{real(eig}(A-BK)) < 0 \)

Closed loop simulations: pend_par.m, statevar_control_lin.m, pendcllin01.mdl

ME242 – MECHANICAL ENGINEERING SYSTEMS

Topics covered:

- Modeling of mechanical/vibrational/electrical/thermal/fluid systems using lumped-parameter models via bondgraphs
- Analytical solution of linear ordinary differential equations (ODE)
- Laplace Transform/Transfer Function representation
- Analytical solution of linear ODE via Laplace Transform
- State Variable representation
- Analytical solution of linear ODE via Matrix Exponential
- Nonlinear ordinary differential equations (ODE)
- Equilibrium/Linearization/Linearity
- Stability assessment based on eigenvalue analysis
- Phase plane analysis for second order systems
- Numerical methods for ordinary differential equations
- Simulation of dynamic systems: Matlab & Simulink
- Mode analysis for vibrational systems
- Frequency response
- Fourier Analysis