Outline

Probabilistic Dynamic Programming Dealing with UNCERTAINTY

- Current stage costs uncertain, but next period's state is certain:
- RESOURCE ALLOCATION EXAMPLE
- Next period's state is uncertain:
- INVENTORY EXAMPLE

Resource Allocation Example

- 6 gallons of milk available, \$1 each
- Selling price is $\$ 2$ per gallon
- Salvage cost is $\$ 0.50$ per gallon

3 stores, uncertain demand

- Want to maximize expected net profit

STORE 1	DAILY DEM	PROB
	1	0.6
	2	0
	3	0.4

STORE 2	DAILY DEM	PROB
	1	0.5
	2	0.1
	3	0.4

STORE 3	DAILY DEM	PROB
	1	0.4
	2	0.3
	3	0.3

Inventory Example

- At Period 1, firm has 1 unit.

- Production cost for x units is $c(x)=3+2 x, c(0)=0, x<5$.
- Demand is random and equal to 1 w.p. 0.5, 2 w.p. 0.5.
- Holding cost \$1/ unit, inventory at end cannot exceed 3.
- Salvage cost \$2/ unit.
- D dollars to allocate
- Sites 1,2,..,T

- $\mathrm{q}_{\mathrm{t}}(\mathrm{x})=$ probability that oil will be found on site t | x dollars allocated
- $r_{t}=$ worth of oil found at site t
- Goal: maximize E(value) of oil found on all sites.

Example: Catching Bass

- Currently
- Lake contains 10,000 bass
- During year t
- $\mathrm{p}_{\mathrm{t}}=$ unit price of bass
- $\mathrm{c}_{\mathrm{t}}(\mathrm{x} \mid \mathrm{b})=$ cost of catching x bass \mid lake contains b bass
- Between time year t bass are caught and year $t+1$ begins
- Bass in lake multiply by factor $\mathrm{D}, \mathrm{P}(\mathrm{D}=\mathrm{d})=\mathrm{q}(\mathrm{d})$
- Goal: Maximize net profit over next 10 years.

Example: ATM

- Sally has 30 minutes for lunch break
- If she makes it to head of the line at the ATM, her reward is r
- Cost per minute waiting time, c
- $\mathrm{p}(\mathrm{x} \mid \mathrm{n})=$ probability that x people will complete service in one minute if n people are ahead of Sally
- Currently, 20 people are ahead.
- Goal: maximize E(net revenue)

Example: Cash Management

- Demand for cash
- $P(D=d)=p(d)$
- Demand met by
- Previous day's cash
- Money from bank
- Shortage cost, s
- Holding cost, i
- Day 1: \$10,000 on hand, \$100,000 in bank
- Time horizon: 30 days. Goal: min E(cost)

Example: Parking

- Approach from west
- Nearsighted
- Cannot return to a spot that's been passed
- $\mathrm{p}_{\mathrm{t}}=\mathrm{P}$ (space t is empty)
- M = cost of no parking

- |t| = cost of parking in t
- Decision: to park?

Example: Safecracker Dirk

- Begin with \$50,000
- Time horizon, 1-60
- $\mathrm{d}_{\mathrm{t}}=$ payment for job
- $\mathrm{p}_{\mathrm{t}}=\mathrm{P}$ (capture)
- All is lost
- Goal: max E(asset)

