Solutions

IE 221

OPERATIONS RESEARCH – PROBABILISTIC MODELS EXAM 1 FALL 2001

1... Using the data that follows,

(a.)

- (a) assuming parts are currently being purchased from an outside vendor, determine the optimal purchase order quantity.
- (b) assuming parts are being produced internally by the company, determine the optimal production length.
- (c) comparing total annual costs of purchasing all parts or producing internally all parts, determine which option is the most cost effective.

D=450/year r=internal production rate=1000/year h_p=\$.3/\$/year

			purchase		produce			
	setup	cost f part	100	K	150	K'		
	cost of	f part	1000	P	1100	P'		
2 = \ 2 KD	=	2(1	00)(4	150)	(=	17.32) 	
DIABUE	V	1000 (.3)				,,,	and the same of th	

(b.)
$$q^* = \sqrt{\frac{2 \text{ KDr}}{(r-0) p' n_p}} = \sqrt{\frac{2 (150) (450) (1000)}{(1000) (.3)}} = 27.27$$

(C.)
$$TC(purehase) = \sqrt{2KDphp} + Dp =$$

$$= \sqrt{2(100)(450)(1000)(.3)} + (450)(1000)$$

$$= 5196.15 + 450000 = 455196.15$$

$$TC(produce) = \sqrt{2K'Dp'hp}(1-\frac{D}{r}) + Dp'$$

$$= \sqrt{2(150)(450)(1100)(.3)(1-\frac{450}{1000})} + (450)(1100)$$

$$= 4950 + 495000 = 494950 > TC(purchase)$$

: purchase parts

IE 221 OPERATIONS RESEARCH – PROBABILISTIC MODELS EXAM 1 FALL 2001

- 2... Using the discrete, single period demand data and other information given below,
 - (a) determine the optimal single period order quantity.
 - (b) The mean of the discrete demand data is 1.2 and the standard deviation is 1. Using a Normal distribution approximation of the data and the rule that the resulting order quantity is rounded to the nearest integer, what is the revenue penalty (if any) for using the Normal approximation?

Selling price = \$100/unit Cost =\$85/unit Salvage value=\$20/unit

d	0	1	2	3	
P(d)	.3	.3	.3	.1	

$$\frac{d=q}{d}: C(d,q) = 85q - 100d - (q-d)20$$

$$= 65q + 80d \rightarrow : C_0 = 65$$

$$\frac{d>q}{}$$
: $c(d,q) = 85q - 100q$

$$= -15q \qquad \Rightarrow cu = 15$$

$$F(d = q^*) > \frac{Cu}{C_0 + Cu} = \frac{15}{80} = .1875$$
 for smallest value of q^*

$$\therefore q^* = 0 \qquad (do not participate)$$

(b.)
$$F(d=q^*) = \frac{Cu}{C_0 + C_0} = .1835 \longrightarrow Z = -.89$$
 $q^* = 1.2 - (.89)(1) = .31$

Nound to 0

. no penalty

IE 221 OPERATIONS RESEARCH – PROBABILISTIC MODELS EXAM 1 FALL 2001

- 3... Using the following data and assuming the "lost sales" case holds,
 - (a) determine the optimal order quantity and reorder point for a continuous review inventory control system.
 - (b) determine the resulting expected annual holding cost and expected annual lost sales cost.
 - (c) determine what the resulting effective SLM₁ is.

$$E(D)=8000/year K=$110 h=$.2/unit/year c1.5=$40/unit$$

$$\mu_{L}=800 \qquad \sigma_{L}=600$$

$$F(\Gamma^{*}) = 1 - \frac{\lambda q^{*}}{\lambda q^{*} + C_{L5}E(0)} = \frac{(.2)(2966.5)}{(.2)(2966.5) + (40)(8000)}$$

$$= 1 - \frac{593.3}{593.3 + 320,000} = .9981$$

$$C : 7 = 2.9$$

$$C : 7 =$$

IE 221

OPERATIONS RESEARCH – PROBABILISTIC MODELS EXAM 1 **FALL 2001**

- Given the following Markov chain transition matrix and other information, 4...
 - determine the probability of being in state 1 after 1 transition and being in state 1 again after 4 transitions. Starting in State 2 given the starting probabilities q_1 and q_2 , determine $P_1(4)$ and $P_2(4)$.
 - (b)
 - given the rate of revenue generation when in a particular state, R₁ and R₂, (c) determine the expected rate of revenue generation in steady state.

$$S=\{1,2\} \quad R=[200 \quad -20] \quad q=[.9 \quad .1] \quad \frac{P_{ij}}{1} \quad \frac{1}{2} \quad \frac{2}{1} \quad \frac{2}{2} \quad \frac{8}{8}$$

$$P^{2} = \begin{bmatrix} .36 & .64 \\ .32 & .68 \end{bmatrix} \quad .2 \quad .8 \end{bmatrix} = \begin{bmatrix} .328 & .672 \\ .328 & .672 \end{bmatrix}$$

$$P = \begin{bmatrix} .36 & .64 \\ .32 & .68 \end{bmatrix} \begin{bmatrix} .2 & .8 \\ .4 & .6 \end{bmatrix} = \begin{bmatrix} .328 & .672 \\ .336 & .664 \end{bmatrix}$$

$$P = \begin{bmatrix} .31 & .328 & .672 \\ .336 & .664 \end{bmatrix}$$

$$P = \begin{bmatrix} .31 & .328 & .328 & .664 \end{bmatrix}$$

$$P = \begin{bmatrix} .31 & .328 & .334 & .668 \\ .333 & .667 \end{bmatrix} = \begin{bmatrix} .334 & .668 \\ .333 & .667 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \\ .333 & .667 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \\ .333 & .667 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .334 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .334 & .666 \end{bmatrix} = \begin{bmatrix} .344 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .344 & .666 \end{bmatrix} = \begin{bmatrix} .344 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .344 & .666 \end{bmatrix} = \begin{bmatrix} .344 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .344 & .666 \end{bmatrix} = \begin{bmatrix} .344 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .4 & .1 \end{bmatrix} \begin{bmatrix} .344 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .666 \end{bmatrix}$$

$$P = \begin{bmatrix} .444 & .666 \end{bmatrix} = \begin{bmatrix} .444 & .6$$

:
$$E[revenue rate] = R_1 \pi_1 + R_2 \pi_2 = (200)(\frac{1}{3}) + (-20)(\frac{2}{3})$$

$$= 53.33$$