Hypothesis Tests on the Mean
$H_{0}: \mu=\mu_{0}$

$$
Z_{0}=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Reject H_{0} if $\quad Z_{0}>z_{\alpha / 2}$ or $Z_{0}<z_{\alpha / 2}$
Fail to reject H_{0} if $\quad-z_{\alpha / 2} \leq Z_{0} \leq z_{\alpha / 2}$

Hypothesis Tests (one side)

- $\mathrm{H}_{0}: \mu=\mu_{0}$
$-\mathrm{H}_{1}: \mu>\mu_{0}$
Reject H_{0} if
$Z_{0}>z_{\alpha}$
$\mathrm{H}_{0}: \mu=\mu_{0}$
$\mathrm{H}_{1}: \mu<\mu_{0}$ Reject $\boldsymbol{H}_{\boldsymbol{0}}$ if $\quad Z_{0}<-z_{\alpha}$

Example: two-sided test

Suppose Guido takes a random sample of $n=25$ and obtains an average burn rate of $51.3 \mathrm{~cm} / \mathrm{s}$.
Specs require that burn rate must be 50 cm / s, and the standard deviation is known to be $2 \mathrm{~cm} / \mathrm{s}$.
He decides to specify a type I error probability (significance level) of 0.05 .
What conclusions can be drawn?

P-value

- The P -value is the smallest level of significance that would lead to rejection of the null hypothesis HO with the given data.
$P= \begin{cases}2\left[1-\Phi\left(\| z_{0}\right)\right] & \text { for test }: H_{0}: \mu=\mu_{0} \quad H_{1}: \mu \neq \mu_{0} \\ 1-\Phi\left(z_{0}\right) & \text { for test }: H_{0}: \mu=\mu_{0} \quad H_{1}: \mu>\mu_{0} \\ \Phi\left(z_{0}\right) & \text { for test }: H_{0}: \mu=\mu_{0} \quad H_{1}: \mu<\mu_{0}\end{cases}$

Probability of Type II Error

The probability of the type II error is the probability that Z_{0} falls between
$-\mathrm{z}_{\alpha / 2}$ and $\mathrm{z}_{\alpha / 2}$ given that H_{1} is true.
$\beta=\Phi\left(z_{\alpha / 2}-\frac{\delta \sqrt{n}}{\sigma}\right)-\Phi\left(-z_{\alpha / 2}-\frac{\delta \sqrt{n}}{\sigma}\right)$

β Requirement Sample Size

For two - tailed tests

$$
n \approx \frac{\left(z_{\alpha / 2}+z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2}}, \delta=\mu-\mu_{0}
$$

For one - tailes tests

$$
n \approx \frac{\left(z_{\alpha}+z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2}}, \delta=\mu-\mu_{0}
$$

Example (cont.)

- Suppose Guido wants to design the burn rate test so that if the true mean burn rate differs from $50 \mathrm{~cm} / \mathrm{s}$ by as much as $1 \mathrm{~cm} / \mathrm{s}$, the test will detect this (i.e. reject the null hypothesis) w.p. 0.90 . Determine the sample size required to detect this departure.

Confidence Intervals

If \bar{x} is the sample mean of a random sample of size n from a population with variance σ^{2}, a $100(1-\alpha) \% \mathrm{CI}$ on μ is given by
$\left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)$

Example

- Construct a 95\% confidence interval for the burn rate. 25 samples were taken. The sample mean is 51.3 and the standard deviation is 2 .
What is the relationship between hypothesis testing and confidence intervals?

Error Bound Sample Size

If \bar{x} is an estimate of μ, we can be $100(1-\alpha) \%$ confident that the error $|\bar{x}-\mu|$ will not exceed a specified amount E when the sample size is:
$n=\left(\frac{z_{\alpha / 2} \sigma}{E}\right)^{2}$

Example

- Suppose that we wanted the error in estimating the mean burn rate of the rocket propellant to less than $1.5 \mathrm{~cm} / \mathrm{s}$, with 95% confidence. What is the required sample size?

One-Sided CIs

The $100(1-\alpha) \%$ upper-CI for μ is
$\mu \leq \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}$
The $100(1-\alpha) \%$ lower-CI for μ is
$\mu \geq \bar{x}-z_{\alpha} \frac{\sigma}{\sqrt{n}}$

General CIs

Let $\hat{\theta}$ be an estimator for θ.
The $100(1-\alpha) \% \mathrm{CI},(L, U)$, is given by:
$\mathrm{P}(L \leq \hat{\theta} \leq U)=1-\alpha$

