Sampling distributions

- The probability distribution of a statistic is called a sampling distribution.
$-\bar{X}$: the sampling distribution of the mean

$$
\begin{aligned}
& \bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \\
& \mu_{\bar{X}}=\frac{\mu+\mu+\ldots+\mu}{n}=\mu \\
& \sigma_{\bar{X}}^{2}=\frac{\sigma^{2}+\sigma^{2}+\ldots+\sigma^{2}}{n}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

The Central Limit Theorem

- When n is sufficiently large (i.e. greater than 15), the sample mean follows approximately a normal distribution:

$$
\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

Example 1

An electronics company manufactures resistors that have a mean resistance of 100Ω and a standard deviation of 10Ω. The distribution of resistance is normal.
Find the probability that a random sample of $n=25$ resistors will have an average resistance less than 25Ω.

Example 2

- Suppose that a random variable X has a continuous uniform distribution

$$
f(x)=\left\{\begin{array}{lr}
1 / 2, & 4 \leq x \leq 6 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the distribution of the sample mean of a random sample of size $\mathrm{n}=40$.

Sampling distribution

- If we have two independent populations with means μ_{1} and μ_{2} and variance $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$, and if \bar{X}_{1} and \bar{X}_{2} are the sample means of two independent random samples of sized n_{1} and n_{2} from these population, then the sampling distribution of

$$
Z=\frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}
$$

is approximately standard normal, if the conditions of the central limit theorem apply. If the two populations are normal, then the sampling distribution of Z is exactly standard normal.

Example 3

- The effective life of a component used in a jet-turbine aircraft engine is a random variable with mean 5000 hr and standard deviation 40 hr . The distribution of effective life is fairly close to a normal distribution. The engine manufacturer increases the mean life to 5050 hr and decreases the standard deviation to 30 hr . Suppose that a random sample of $n 1=16$ components is selected from the old process and a random sample of $n 2=25$ components is selected from the improved process. What is the probability that the difference in the two sample means is at least 25 hr ?

