Introduction

- What does it mean when there is a strong positive correlation between x and y ?
- Regression analysis aims to find a precise formula to relate the movements of y to those of x
- The use of regression requires a good deal of thought and a good dose of skepticism

Example: Sales vs. Advertising

Advertising (mil.\$)	Sales (mil.\$)
1.2	120
1.6	190
1.8	260
2.2	260
2.6	300
3.1	290
3.4	330
3.6	330
4.0	340
4.2	310

Example: Sales vs. Advertising

Example: Sales vs. Advertising

- It is believed that sales, S, are tied to advertising, A, by a simple linear equation:

$$
S=\beta_{0}+\beta_{1} A
$$

- What do β_{0} and β_{1} represent?

How can we find β_{0} and β_{1} ?

Sales vs. Advertising

The linear relation is usually not exact.

- A more realistic model:

$$
S_{i}=\beta_{0}+\beta_{1} A_{i}+\varepsilon_{i}
$$

Where β_{0} and β_{1} are regression coefficients.

Measurement Error ε_{i}

Properties of distribution

- A mean of zero
- Symmetry around zero
- An assignment of greater probability to small errors than to larger ones
Errors are assumed to be:
- Independent
- Have same variance (homoscedasticity)

Method of Least Squares

Consider the simple formula:

$$
Y=\beta_{0}+\beta_{1} x+\varepsilon
$$

- Where the measurement errors are independent samples from $\mathrm{N}\left(0, \sigma_{\varepsilon}\right)$

How to find the estimators of β_{0} and β_{1} ?

Choosing the best line

Least Squares Estimates

Suggest an index to measure discrepancy between points and line

- Focus on vertical disparities between points and line
- Sum of the square of the deviations:

$$
L\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n} \varepsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Least Squares Estimates

$$
\begin{aligned}
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{l} \bar{x} \\
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i} x_{i}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)\left(\sum_{i=1}^{n} x_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
\end{aligned}
$$

where $\bar{y}=(1 / n) \sum_{i=1}^{n} y_{i}$ and $\bar{x}=(1 / n) \sum_{i=1}^{n} x_{i}$

