## Course Materials

TEXT:

- Applied Probability and Statistics for Engineers by D.C.Montgomery and G.C.Runger (J ohn Wiley \& Sons, 1999)
- http://www.lehigh.edu/~eup2/teaching/ie121
- Announcements
- Lecture notes
- Homeworks and solutions, and more...


## Course Outline

- Probability Review

- Parameter Estimation
- Hypothesis Testing, Statistical Inference

Regression and Correlation
Analysis of Variance

- Non-Parametric Statistics

Statistical Quality Control

## Probability Review

- FOUR Laws of Probability:
- $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
- If $A, B$ are m.e., then $P(A \cup B)=P(A)+P(B)$
- If $A, B$ are indept, then $P(A \cap B)=P(A) \cdot P(B)$
$\square P(A \mid B)=P(A \cap B) / P(B)$. By extension, Bayes' Law: $P(A \mid B)=P(A) \cdot P(B \mid A) / P(B)$


A medical test for malaria is subject to both false-positive and false-negative errors. Given that a person has malaria, the probability the test will fail to reveal it is 0.06 . And, given that a person does not have malaria, the chance is 0.09 that the test will suggest the opposite.


- Given that Guido has malaria, what is the chance that his test result will reflect it?
- From earlier information, a physician concludes that Guido has a 70\% chance of suffering from malaria. Based on this estimate, what is the chance Guido's test result will indicate malaria?
- Given that his test result indicates malaria, what is the revised probability that Guido suffers from it?


## Probability Example 2

Hermione, who was born on January 24, enters a room with seven other people. Under the assumption of uniformly-distributed birthdays:

- What is the probability that none of the others shares her birthday?
What is the chance that at least one of the others does so?


## The Binomial Distribution

- Four basic properties:
- Consists of $n$ trials
- Each trial has exactly two m.e. outcomes, A and B
- The probability of A takes the same value, p, on all trials
- The n trials are independent of each other


## The Binomial Dist cont...

- $X=$ number of times that event $A$ comes up over the n trials of the binomial process
- $\mathrm{P}(\mathrm{X}=\mathrm{k})=\binom{n}{k} \cdot \mathrm{p}^{\mathrm{k}} .(1-\mathrm{p})^{\mathrm{n}-\mathrm{k}}$
where $\binom{n}{k} \stackrel{(k)}{=} \mathrm{n}!/(\mathrm{k}!(\mathrm{n}-\mathrm{k})!)$


## Example

- Each sample of air has a $10 \%$ chance of containing a particular rare molecule. Assume the samples are independent with regard to the presence of the rare molecule. Find the probability that in the next 18 samples, exactly 2 contain the rare molecule.


## The Mean (for discrete r.v.)

- a.k.a. the average, the expected value, the expectation
- For a discrete r.v.: $\mu=\Sigma x_{\mathrm{i}} \cdot \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$
- Example: for binomial distribution

$$
E(X)=n p
$$

## Rules for computing means

$E(c X)=c \cdot E(X)$
$-E(X+Y)=E(X)+E(Y)$
$-E(X)=E\left(X \mid A_{1}\right) \cdot P\left(A_{1}\right)+E\left(X \mid A_{2}\right) \cdot P\left(A_{2}\right)+$
$\ldots+E\left(X \mid A_{m}\right) \cdot P\left(A_{m}\right)$


## Quick Example

Determining the average revenue per summer day of a beachfront restaurant with average revenue of $\$ 33,000$ on sunny summer days, and $\$ 14,000$ on gloomy ones. If $70 \%$ of all days are sunny and the rest gloomy, what is the average revenue of the restaurant?

## Variance and Standard Deviation

For a discrete r.v.:
$\operatorname{Var}(\mathrm{X})=\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$
Stddev $(X)=\sqrt{\operatorname{Var}(\mathbf{X})}$

## Variance Formulae

$\square \operatorname{Var}(\mathrm{c} . \mathrm{X})=\mathrm{c}^{2} . \operatorname{Var}(\mathrm{X})$

- If $X$ and $Y$ are independent, then
$\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})$
- Suppose that $E\left(Z \mid A_{i}\right)=\mu_{i}$ and
$\operatorname{Stdev}\left(Z \mid A_{i}\right)=\sigma_{i}$, then $\operatorname{Var}(Z)=$
$\Sigma\left[\sigma_{i}^{2}+\left(\mu_{i}-E(Z)\right)^{2}\right] \cdot P\left(A_{i}\right)$

- Suppose now that $\sigma\left(\mathrm{Z} \mid \mathrm{A}_{1}\right)=\$ 4500$ and $\sigma\left(Z \mid A_{2}\right)=\$ 1000$. What is the $\operatorname{Var}(Z)$ ?


## Continuous Random Variables

$-X$ is continuous -> $X$ can assume any value in some interval from a to $b$.

- Probabilistic questions refer to intervals rather than specific values.
The probability density function:
$f(y) d y=P(y \leq X \leq y+d y)$
- The cumulative distribution function: $F(y)=P(X \leq y)$



## Example

- Hermione believes that the price of gas is equally likely between $\$ 1.25$ and $\$ 1.60$. Suppose four gas stations are chosen at random. Assuming that Hermione is correct, find the probability that:
- The first one chosen has price between $\$ 1.25$ and \$1.50.
All four have prices between $\$ 1.25$ and $\$ 1.50$
- None have prices between $\$ 1.25$ and $\$ 1.50$
- At least one has price between $\$ 1.25$ and $\$ 1.50$.


## The Normal Distribution

. $\mathrm{X} \sim \mathrm{N}(\mu, \sigma)$

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

## Using the Normal Table

- Compute $z=(y-\mu) / \sigma$

From the normal table, $\mathrm{F}(\mathrm{y})=\Phi(\mathrm{z})$
That's all.

## Some numbers of interest

$\square P(x \leq \mu)=P(x>\mu)=0.5$

- $P(\mu-\sigma \leq x \leq \mu+\sigma) \approx 0.68$

■ $\mathrm{P}(\mu-2 \sigma \leq x \leq \mu+2 \sigma) \approx 0.95$

- $\mathrm{P}(\mu-3 \sigma \leq \mathrm{x} \leq \mu+3 \sigma) \approx 0.997$


## Example: Earthquakes

- Some geological measurements suggest that maximum-strength earthquakes occur on the southern end of the San Andreas Fault every 145 years on average. But the individual intervals between "Big Ones" vary a bit around this average.


## Earthquakes cont...

- Assume that an adequate model posits that, given that a huge earthquake has just occurred, the time $x$ until the next one follows a normal distribution with mean 145 and standard deviation 10.
- The last huge earthquake on the southern San Andreas occurred in 1857. What is the probability that the next monstrous quake will take place before 2010?


## Example: Computer Code

Suppose that a computer program consists of 10,000 lines of code, each of which independently has a one in 1500 chance of containing an error. Guido, the dean of debugging, can detect and correct each error present in a program in (exactly) one hour. If he is hired to get the 10,000 -line program ready to roll, what is the probability he will be able to do so in one eight-hour work day?

## Normal approx to Binomial

-     -         - 
- If $X \sim \operatorname{Bin}(n, p)$,
- If $n p>5$ and $n(1-p)>5$,

Then Z is approximately a standard normal random variable, where

$$
Z=\frac{X-n p}{\sqrt{n p(1-p)}}
$$

## Example: Coin Tossing

- If a fair coin is tossed 144 times, what is the probability that the number of heads falls between 60 and 72 (including the end points)?



## Example

Consider the quantities

- $\mathrm{Q}=$ noon temperature in Bethlehem
- $R=$ beer consumption in Bethlehem that day
- $\mathrm{S}=$ hot coffee consumption in Bethlehem that day
- $\mathrm{U}=$ noon temperature in the Philadelphia



## Example

Suppose that, over a data set, $x$ equals 1 half the time and 11 half the time, and $z$ follows the same pattern. Find the correlation coefficient for the following cases:
CASE I : whenever $x=11, z=11$, and whenever $x=1, z=1$
CASE \|: whenever $x=11, z=1$, and whenever $x=1, z=11$
CASE III: when $x=11, z$ is equally likely to be 1 or 11 ; when $x=1, z$ is equally likely to be 1 or 11 .


