IE 121 - Spring 2002

Midterm exam 2

1. (15 points) In this problem, you need to select the correct answer.
2. The null hypothesis is $H_{0}: \mu=\mu_{0}$, and the variance of the population is known. Which test statistic has to be used for the hypothesis testing?
a) z_{0}
b) t_{0}
c) χ_{0}^{2}
3. Let L_{95} be the length of the 95% confidence interval for a certain mean.

Let L_{90} be the length of the 90% confidence interval for the same mean. Which of the following statements is true?
a) $L_{95}>L_{90}$
b) $L_{95}<L_{90}$
c) $L_{95}=L_{90}$
3. Suppose we want to test the null hypothesis on the population proportion $H_{0}: p=p_{0}$ against the alternative one $H_{1}: p>p_{0}$ at the significance level α. Which of the following is the correct rejection criterion?
a) $\left|z_{0}\right|>z_{\alpha / 2}$
b) $z_{0}>z_{\alpha}$
c) $z_{0}<-z_{\alpha}$
d) $z_{0}>z_{\alpha / 2}$
4. When the number of degrees of freedom of the t distribution is very large, it becomes:
a) a normal distribution with mean 0 and variance 2
b) a χ^{2} distribution
c) the standard normal distribution
d) an exponential distribution
5. Which of the following distributions is symmetric?
a) t distribution
b) χ^{2} distribution

Answers: 1. a) 2. a) 3. b) 4. c) 5. a)

IE 121 - Spring 2002

Midterm exam 2

2. (25 points) A random sample of 200 semiconductor devices were tested and 4 of them were found to be defective.
a) Find a 95% confidence interval on the true proportion of defective devices.
b) Using the point estimate of p from the above sample, how many devices must be tested to be 90% confident that the error in estimating the true value of p is no more than 0.02 ?
c) What the sample size should be if we want to be at least 90% confident that the error in estimating p does not exceed 0.02 regardless of the value of p ?

Solution:

a)

$$
\begin{gathered}
0.02-1.96 \sqrt{\frac{0.02 \cdot 0.98}{200}} \leq p \leq 0.02+1.96 \sqrt{\frac{0.02 \cdot 0.98}{200}} \\
0.010 \leq p \leq 0.030
\end{gathered}
$$

b) $n=\left(\frac{1.64}{0.02}\right)^{2} 0.02 \cdot 0.98=131.8 \simeq 132$
c) $n=\left(\frac{1.64}{0.02}\right)^{2} 0.25=1681$

IE 121 - Spring 2002

Midterm exam 2

3. (30 points) A chocolate factory wants to make sure that the mean of sugar content μ of one of their products does not exceed 30%. To test this hypothesis $H_{0}: \mu=30$ against the alternate one $H_{1}: \mu>30$ they choose a random sample of size 20 . The sample mean is found to be $\bar{x}=31.1 \%$, and the sample standard deviation turns out to be $s=2.5 \%$ (they have no independent knowledge of the variance at this point). They want to use $\alpha=0.1$.
a) Will they reject the null hypothesis given this data?
b) Now suppose they know that the true standard deviation is $\sigma=2.4$. What sample size should they use in order to be able to detect the true mean sugar content of 31.5% with probability 0.95 ?

Solution:

a) $t_{0}=\frac{31.1-30}{2.5 / \sqrt{20}}=2.050>t_{0.1,19}=1.328$

So they will reject the null hypothesis.
b) Since the standard deviation is known, we can use the corresponding methods (formula 8-25 from the old book and 9-20 from the new book):

$$
n=\frac{(1.28+1.64)^{2} \cdot 2.4^{2}}{1.5^{2}}=21.8 \simeq 22
$$

IE 121 - Spring 2002

Midterm exam 2

4. (30 points) We would like to test the hypothesis that whether a student likes coffee is independent on the major. For that purpose we poll a 100 Engineering and a 100 Arts and Sciences majors. The results are shown in the table below.
a) Would we reject the hypothesis at $\alpha=0.1$ significance level?
b) What is the range on the corresponding P -value?

	Like coffee	Do not like coffee
Engineering	45	55
Arts and Sciences	30	70

Solution: a) The table of expected frequencies if the hypothesis of independence is true reads:

	Like coffee	Do not like coffee
Engineering	37.5	62.5
Arts and Sciences	37.5	62.5

So the test statistic is
$\chi_{0}^{2}=\frac{(45-37.5)^{2}}{37.5}+\frac{(30-37.5)^{2}}{37.5}+\frac{(55-62.5)^{2}}{62.5}+\frac{(70-62.5)^{2}}{62.5}=4.80>2.71=\chi_{0.1,1}^{2}$
so we reject the hypothesis at $\alpha=0.1$.
b) From the χ^{2} table: $0.025 \leq P \leq 0.05$

