## IE 121 - Spring 2002

## Midterm exam 1

1. (30 points) In this problem, you need to answer the following questions TRUE or FALSE inside the brackets:
2. ( ) Any unbiased estimator always gives a smaller mean square error than an unbiased one.
3. ( ) The standard error of an estimator $\hat{\Theta}$ is its standard deviation.
4. ( ) If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size $\mathrm{n}(n>50)$ taken from a population with exponential distribution, then the sample mean $\bar{X}$ also follows the exponential distribution.
5. ( ) Suppose that a random sample of size n is taken from a normal population with mean $\mu$. Then the mean of the sample mean is $\mu$.
6. ( ) Suppose that a random sample of size $n$ is taken from a normal population with variance $\sigma^{2}$. Then the variance of the sample mean is $\sigma^{2}$.
7. ( ) Failing to reject the null hypothesis when it is false is defined as a type I error.
8. ( ) There is no way to reduce the probability of both type I and type II error simultaneously if the sample size is fixed.
9. ( ) If the sample size is fixed, enlarging the acceptance region for a test will result in an increase of the probability of type I error.
10. ( ) If the sample size is increased, the probability of rejecting the null hypothesis when it is true is reduced.
11. ( ) The sample mean is the true mean of the population as long as the sample size is larger than 10 .

Answers: 1.F, 2.T, 3.F, 4.T, 5.F, 6.F, 7.T, 8.F, 9.T, 10.F

## IE 121 - Spring 2002

## Midterm exam 1

2. (30 points) A chocolate factory wants to make sure that the mean of sugar content $\mu$ of one of their products does not exceed $30 \%$. To test this hypothesis $H_{0}: \mu=30$ against the alternate one $H_{1}: \mu>30$ they choose a sample of size 20. Assume the standard deviation of the sugar content is equal to $3.5 \%$.
a) What is the probability of type I error if the critical region is defined to be $\mu>31.5$ ?
b) Find the probability of type II error assuming the true mean sugar content is $31.8 \%$. Would this probability increase or decrease if the sample size were 40 ?

## Solution:

a) $\alpha=P(\bar{X}>31.5 \mid \mu=30)=P\left(\frac{\bar{X}-30}{3.5 / \sqrt{20}}>\frac{31.5-30}{3.5 / \sqrt{20}}\right)=P(Z>1.917)=$ $1-\Phi(1.917)=0.027$
b) $\beta=P(\bar{X}<31.5 \mid \mu=31.8)=P\left(\frac{\bar{X}-31.8}{3.5 / \sqrt{20}}<\frac{31.5-31.8}{3.5 / \sqrt{20}}\right)=P(Z<$ $-0.383)=\Phi(-0.383)=0.352$

If the sample size were 40 we would have:
$\beta=P(\bar{X}<31.5 \mid \mu=31.8)=P\left(\frac{\bar{X}-31.8}{3.5 / \sqrt{40}}<\frac{31.5-31.8}{3.5 / \sqrt{40}}\right)=P(Z<-0.542)=$ $\Phi(-0.542)=0.295$, i.e. $\beta$ would decrease.

## IE 121 - Spring 2002

## Midterm exam 1

3. (40 points) Let X be uniformly distributed on the interval $a$ to $b$. Suppose we take a random sample of X and obtain the data $x_{1}=2.6, x_{2}=3.8$, $x_{3}=1.1, x_{4}=4.3, x_{5}=4.9$.
a) Write down the likelihood function $L(a, b)$ for all values of $a$ and $b$.
b) What is the maximum likelihood estimate of $a$ based on our data?
c) What is the maximum likelihood estimate of $b$ based on the data?
d) Is the corresponding estimator for $a$ unbiased? What about the estimator for $b$ ? Explain your answer.

## Solution:

a)

$$
L(a, b)= \begin{cases}\left(\frac{1}{b-a}\right)^{5} & \text { for } a<1.1 \text { and } b>4.9 \\ 0 & \text { otherwise }\end{cases}
$$

b) The maximum likelihood estimate of $a$ is $\min _{i=1, \ldots, 5}\left(x_{i}\right)=1.1$
c) The maximum likelihood estimate of $b$ is $\max _{i=1, \ldots, 5}\left(x_{i}\right)=4.9$
d) Both estimators are biased. For example the estimator for $a$ is $\hat{a}=$ $\min _{i}\left(X_{i}\right)$, so in any case $\hat{a}>a$. Therefore $E(\hat{a})=a$ only if $\hat{a} \equiv a$, which is false. The argument for $\hat{b}=\max _{i}\left(X_{i}\right)$ is the same.

