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Abstract. We determine much information about the mod-2 co-
homology ring of the space M(`1, . . . , `n) of oriented isometry
classes of planar n-gons with the specified side lengths. From
this, we obtain bounds for the zero-divisor-cup-length (zcl) of these
spaces, which provide lower bounds for their topological complex-
ity (TC). In many cases our result about the cohomology ring is
complete and we determine the precise zcl. We find that there will
usually be a significant gap between the bounds for TC implied by
zcl and dimensional considerations.

1. Introduction

The topological complexity, TC(X), of a topological space X is, roughly, the num-

ber of rules required to specify how to move between any two points of X. A “rule”

must be such that the choice of path varies continuously with the choice of endpoints.

(See [4, §4].) Information about the cohomology ring of X can be used to give a lower

bound for TC(X).

Let ` = (`1, . . . , `n) be an n-tuple of positive real numbers. Let M(`) denote the

space of oriented n-gons in the plane with successive side lengths `1, . . . , `n, where

polygons are identified under translation and rotation. Thus

M(`) = {(z1, . . . , zn) ∈ (S1)n :
∑

`izi = 0}/SO(2).

If we think of the sides of the polygon as linked arms of a robot, then TC(M(`))

is the number of rules required to program the robot to move between any two

configurations.
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Let [n] = {1, . . . , n} throughout. We say that ` is generic if there is no subset

S ⊂ [n] for which
∑
i∈S

`i = 1
2

n∑
i=1

`i. For such `, M(`) is an (n− 3)-manifold ([4, Thm

1.3]) and hence, by [4, Cor 4.15], satisfies

(1.1) TC(M(`)) ≤ 2n− 5.

In this paper, we obtain significant information about the mod-2 cohomology ring

H∗(M(`)) when ` is generic, yielding lower bounds for TC(M(`)). Frequently, our

description of the cohomology ring is complete, and we can give the best lower bound

implied by cohomological methods. However, unlike the situation for isometry classes

of polygons, i.e., when polygons are also identified under reflection, this lower bound

is usually significantly less than 2n− 5.

Indeed, for the space of isometry classes of planar polygons,

M(`) = {(z1, . . . , zn) ∈ (S1)n :
∑

`izi = 0}/O(2),

the mod-2 cohomology ring was completely determined in [9], and in [1] and [2] we

showed that for several large families of `,

2n− 6 ≤ TC(M(`)) ≤ 2n− 5,

the latter because M(`)) is also an (n− 3)-manifold when ` is generic. Note that for

motions in the plane, M(`) would seem to be a more relevant space than M(`).

Although the abelian group structure of H∗(M(`)) is known ([4, Thm 1.7]), the

ring structure was apparently not. Nitu Kitchloo pointed out to the author that

applying the Eilenberg-Moore spectral sequence (EMSS) to the fibration

(1.2) M(`)→M(`)→ BZ2

should yield much information about this ring structure. The author is grateful to

Dr. Kitchloo for this observation and instruction regarding this spectral sequence.

After completing a version of this paper, the author noticed that Hausmann ([8,

§10.3.3]) obtained results similar to our results on the cohomology ring in a slightly

different situation.

The way in which knowledge of the cohomology ring yields a lower bound for

topological complexity is through the mod-2 zero-divisor-cup-length of X, zcl(X),

which is the maximum number of elements αi ∈ H∗(X ×X;Z2) satisfying m(αi) = 0
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and
∏
i

αi 6= 0. Here m : H∗(X)⊗H∗(X)→ H∗(X) denotes the cup product pairing,

and αi is called a zero divisor. Throughout the paper, all cohomology groups have

coefficients in Z2. In [5, Thm 7], it was shown that

TC(X) ≥ zcl(X) + 1.

In Section 2, we describe the information about H∗(M(`)) readily obtainable from

the EMSS. See especially Corollary 2.11, which gives a complete description of the

algebra H∗(M(`)) in some cases (64 out of 134 when n = 7). In Section 3, we apply

these results to obtain information about zcl(M(`)) and hence TC(M(`)). Theorems

3.1 and 3.2 give upper and lower bounds for zcl(M(`)). See Table 3.6 for a tabulation

when n = 8. In Section 4, we give an example showing how extension questions in

the EMSS prevent us from making stronger zcl estimates.

2. The cohomology ring H∗(M(`))

The version of the Eilenberg-Moore spectral sequence described in [13, Thm 6.2]

says that if F → E → B is a fibration with B simply-connected, there is a natu-

ral second quadrant spectral sequence of bigraded commutative algebras converging

strongly to H∗(F ) with Ep,q
2 = Torp,qH∗B(Z2, H

∗E). In [3], it is shown that this is also

true when π1(B) acts nilpotently on H∗F . We apply this to the fibration (1.2), and

temporarily remove ` from the notation. Since π1(BZ2) has order 2, it acts nilpotently

on any finite dimensional vector space over Z2.

Since H∗(BZ2) is a polynomial algebra on a 1-dimensional class x, the H∗(B)-

resolution of Z2 can be taken to be just

0← Z2 ← H∗BZ2
x←− ΣH∗BZ2 ← 0.

Since x maps to an element in H1(M) usually called R, Tor∗,qH∗BZ2
(Z2, H

∗(M)) is the

homology in grading q of

H∗(M)
R←− ΣH∗(M),
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where Σ increases grading by 1. The usual indexing of the EMSS, as discussed in [12,

p.240], uses negative p-gradings. Thus

Ep,q
2 = Torp,qH∗BZ2

(Z2, H
∗M) =


Hq(M)/R p = 0

ker(R|Hq−1(M)) p = −1

0 otherwise.

There are no possible differentials, and so the short exact sequence

0→ E0,q
∞ → Hq(M)→ E−1,q+1

∞ → 0

becomes a degree-preserving SES

(2.1) 0→ H∗(M)/R→ H∗(M)→ ker(R|H∗(M))→ 0,

and, by [13, Thm 6.2], these are morphisms of algebras over H∗(M). This SES was

obtained by a different method in [8, Thm 10.3.17].

We assume throughout that `1 ≤ · · · ≤ `n. It is well-understood ([9, Prop 2.2])

that the homeomorphism type of M(`) and M(l) is determined by which subsets S

of [n] are short, which means that
∑
i∈S

`i <
1
2

n∑
i=1

`i. For generic l, a subset which is

not short is called long.

Define a partial order on the power set of [n] by S ≤ T if S = {s1, . . . , s`} and

T ⊃ {t1, . . . , t`} with si ≤ ti for all i. This order will be used throughout the paper,

applied also to multisets. As introduced in [10], the genetic code of l is the set of

maximal elements (called genes) in the set of short subsets of [n] which contain n.

The homeomorphism type of M(`) and M(l) is determined by the genetic code of

l. Note that if l = (`1, . . . , `n), then all genes have largest element n. We introduce

the new terminology that if {n, ir, . . . , i1} is a gene, then {ir, . . . , i1} is called a gee.

(Gene without the n.)

We recall the following result from [9].

Theorem 2.2. If l has length n, then the ring H∗(M(l)) is generated by classes

R, V1, . . . , Vn−1 in H1(M(l)) subject to only the following relations:

(1) For each i, V 2
i = RVi. Thus all monomials can be expressed as

ReVi1 · · ·Vir for some e ≥ 0 and i1 < · · · < ir with 0 ≤ r ≤ n−1.

(2) If S ⊂ [n− 1] has S ∪ {n} long, then
∏
i∈S

Vi = 0.
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(3) If L ⊂ [n− 1] is long and |L| ≤ d+ 1, then

(2.3)
∑
S⊂L

S∪{n} short

Rd−|S|
∏
i∈S

Vi = 0.

We immediately obtain

Corollary 2.4. A basis for H∗(M(l))/R consists of all elements VS :=
∏
i∈S

Vi such

that S ∪ {n} is short. Equivalently, these are exactly those VS for which S ≤ G for

some gee G of `.

It is well-known (e.g. [7, Expl 2.3]) that if the genetic code of ` is 〈{n, n − 3, n −
4, . . . , 1}〉, then M(`) is homeomorphic to (S1)n−3 t (S1)n−3. We will exclude this

case from our analysis and use the following known result, in which, as always, ` =

(`1, . . . , `n).

Proposition 2.5. ([7, Rmk 2.8]) If the genetic code of ` does not equal 〈{n, n −
3, . . . , 1}〉, then all genes have cardinality less than n − 2, and M(`) is a connected

(n− 3)-manifold.

From now on, let m = n− 3 denote the dimension of M(`) and M(`), and let W∅

denote the nonzero element of Hm(M(`)). We obtain

Theorem 2.6. A basis for H∗(M(l)) consists of the classes VS described in Corollary

2.4 together with classes WS ∈ Hm−|S|(M(`)), for exactly the same S’s, satisfying that

VSWS′ = δS,S′W∅ if |S ′| = |S|.

Also VSVS′ = VS∪S′ if S and S ′ are disjoint and S∪S ′ ≤ some gee of `, while VSVS′ = 0

otherwise. Finally, WSWS′ = 0 whenever |WS|+ |WS′ | = m.

Proof. By [4, Thm 1.7], for all i, the ith Betti number of M(`) equals the number of

VS’s described in Corollary 2.4 of degree i plus the number of such VS’s of degree m−i.
By (2.1), our classes VS are linearly independent in H∗(M(`)) and all products VSVS′

are zero except those listed in our set. The nonsingularity of the Poincaré duality

pairing implies that there are classes WS which pair with the classes VS and with each

other in the claimed manner, and the Betti number result implies that there are no

additional classes.
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The following elementary lemma was used in the preceding proof. This lemma is

applied to U = H i(M(`)), U ′ = Hm−i(M(`)), {u1, . . . , uk} the set of VS’s inH i(M(`)),

and {u′k+1, . . . , u
′
t} the set of VS’s in Hm−i(M(`)).

Lemma 2.7. Suppose U and U ′ are t-dimensional vector spaces over Z2 and φ :

U × U ′ → Z2 is a nonsingular bilinear pairing. Suppose {u1, . . . , uk} ⊂ U is linearly

independent, as is {u′k+1, . . . , u
′
t} ⊂ U ′, and φ(ui, u

′
j) = 0 for 1 ≤ i ≤ k < j ≤ t.

Then there exist bases {u1, . . . , ut} and {u′1, . . . , u′t} of U and U ′ extending the given

linearly-independent sets and satisfying φ(ui, u
′
j) = δi,j.

Proof. For 1 ≤ i ≤ k, let ψi : U → Z2 be any homomorphism for which ψi(uj) = δi,j

for 1 ≤ j ≤ k. By nonsingularity, there is u′i ∈ U ′ such that φ(u, u′i) = ψi(u) for all

u ∈ U . To see that {u′1, . . . , u′t} is linearly independent, assume
∑
c`u
′
` = 0. Applying

φ(ui,−) implies that ci = 0, 1 ≤ i ≤ k, while linear independence of {u′k+1, . . . , u
′
t}

then implies that ck+1 = · · · = ct = 0. Nonsingularity now implies that there are

classes ui for i > k such that φ(ui, u
′
j) = δi,j for all j, and linear independence of the

ui’s is immediate.

Arguments similar to this and Proposition 2.8 below were also presented, in slightly

different situations, in [8, Rmk 10.3.20] and [6, Prop A.2.4].

Let s denote the size of the largest gee of `. The only VS’s occur in gradings ≤ s,

and so the only WS’s occur in grading ≥ m−s. If 2(m−s) ≤ m−1 (i.e., m ≤ 2s−1),

then there can be nontrivial products of WS’s, about which we apparently have little

control, unless we go to the huge effort of obtaining explicit formulas for elements in

the ker(R)-part of (2.1). See Section 4 for an example of such an effort.

The following simple result gives excellent information about products of V classes

times W classes. In particular, if m ≥ 2s, the entire ring structure is determined!

See Corollary 2.11. When m = 4, this is the case for 64 of the 134 equivalence classes

of `’s. (See [11].) It seems quite remarkable that much (often all) of the algebra

structure of H∗(M(`)) can be obtained without using the complicated relation in

Theorem 2.2(3).
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Proposition 2.8. Modulo polynomials in V1, . . . , Vn−1,

(2.9) ViWS ≡

{
WT if S = T ∪ {i}
0 if i 6∈ S.

In particular, if s is the maximal size of gees and m− |S| ≥ s, then

(2.10) ViWS =

{
WT if S = T ∪ {i}
0 if i 6∈ S.

Proof. Write ViWS =
∑
αPVP +

∑
α′QWQ with αP , α

′
Q ∈ Z2. If VT is any monomial

in grading |S| − 1, then

δS,T∪{i}W∅ = VTViWS =
∑
Q

α′QδT,QW∅ = α′TW∅,

as all monomials in the V ’s are 0 in grading m. The first result follows immediately.

The second part follows since |ViWS| = m− |S|+ 1 and all polynomials in the V ’s

are 0 in grading > s.

Corollary 2.11. Let M = M(`). If m ≥ 2s, where s is the maximal gee size,

then the complete product structure of H∗(M) is given as follows. There are classes

Vi ∈ H1(M) such that V 2
i = 0 and

∏
i∈S Vi is nonzero iff S ≤ some gee of `, and

these monomials are linearly independent. For all such S, there are also additional

independent classes WS ∈ Hm−|S|(M). All products WSWS′ are 0, and ViWS is given

by (2.10).

We offer the following illustrative example, in which we have complete information

about the product structure. Here we begin using the notation introduced in [10]

of writing genes (and gees) which are sets of 1-digit numbers by just concatenating

those digits.
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Example 2.12. Suppose the genetic code of ` is 〈9421, 95〉. Then a basis for H∗(M(`))

is:

0 1

1 V1, V2, V3, V4, V5

2 V1V2, V1V3, V1V4, V2V3, V2V4

3 V1V2V3, V1V2V4,W123,W124

4 W12,W13,W14,W23,W24

5 W1,W2,W3,W4,W5

6 W∅.

The only products of V ’s are those indicated. All products of W ’s are 0. The multi-

plication of Vi by WS is by removal of the subscript i, if i ∈ S, else 0.

In the above example, m = 6 and s = 3. It is quite possible that a similarly nice

product structure might hold in some cases in which m < 2s. When it does not,

we refer to nonzero products of W ’s or cases in which (2.10) does not hold as exotic

products. In Section 4, we study the exotic products and their effect in a simple

example.

3. Zero-divisor-cup-length

In this section we consider the zero-divisor-cup-length zcl(M(`)), where ` = (`1, . . . , `n),

` is generic, and its genetic code does not equal 〈{n, n − 3, . . . , 1}〉. We also discuss

the implications for topological complexity.

Our first result is an upper bound, which will sometimes be sharp. See Table 3.6

for a tabulation when n = 8. Recall that m = n− 3.

Theorem 3.1. If s is the largest cardinality of the gees of `, then zcl(M(`)) ≤ 2s+1.

Proof. For u ∈ H∗(M(`)), let u = u ⊗ 1 + 1 ⊗ u. We first consider products of the

form
∏
ui. By symmetry, any such product in dimension 2m must be 0, as it will

have an even number of terms W∅ ⊗W∅.
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A product of a Vi’s and b WS’s has grading ≥ a+b(m−s). If a > 2s, then
∏
Vi = 0,

so we may assume that a ≤ 2s. If a+ b ≥ 2s+ 2, then b ≥ 2 and

a+b(m−s) ≥ 2s+2−b+b(m−s) = bm−(b−2)(s+1) ≥ bm−(b−2)m = 2m,

and so the product must be 0. We have used that s ≤ m− 1 by Proposition 2.5.

Now we consider the possibility of more general zero divisors. Let αj denote a zero

divisor which contains a term A⊗B in which the total number of V -factors (resp. W -

factors) in AB is pj (resp. qj) with pj + qj ≥ 2. Its grading is ≥ pj + qj(m − s). A

product of a Vi’s, b WS’s, and c αj’s, with a+b+c ≥ 2s+2 will be 0 if a+
∑
pj > 2s,

so we may assume a+
∑
pj ≤ 2s. This product, with c ≥ 1, has grading

≥ a+ b(m− s) +
∑

pj + (m− s)
∑

qj

≥ a+ b(m− s) +
∑

pj + (m− s)(2c−
∑

pj)

≥ a+ (b+ 2c)(m− s) + (m− s− 1)(a− 2s)

= (m− s− 1)(a+ b+ 2c− 2s) + a+ b+ 2c

≥ 2(m− s− 1) + 2s+ 2 + c

= 2m+ 1,

and hence is 0.

Next we give our best result for lower bounds. Recall that the partial order de-

scribed just before Theorem 2.2 is applied also to multisets.

Theorem 3.2.

a. If G and G′ are gees of `, not necessarily distinct, and there is

an inequality of multisets G∪G′ ≥ [k], then zcl(M(`)) ≥ k+ 1.

b. If there are no exotic products in H∗(M(`)), then (a) is sharp

in the sense that

zcl(M(`)) = 1 + max{k : ∃ gees of ` with G ∪G′ ≥ [k]}.

In particular, (b) holds if m ≥ 2s, where s denotes the maximum size of the gees of

`.
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Proof. Under the hypothesis of (a), there is a partition [k] = S t T with G ≥ S, and

G′ ≥ T . Then the following product of k + 1 zero-divisors is nonzero:∏
i∈S

Vi ·WS ·
∏
j∈T

Vj.

Indeed, this product contains the nonzero term W∅ ⊗ VT , and this term cannot be

cancelled by any other term in the expansion, since the only way to obtain W∅ is as

VUWU for some set U .

Now we prove (b) by showing that for any nonzero product of k + 1 zero divisors,

there is an inequality of multisets [k] ≤ G ∪ G′, where G and G′ are gees of `.

We begin by considering the case when all the zero divisors are of the form Vi or

WS. Since products of W ’s are 0, there cannot be more than two W ’s. The case

of no W ’s is easiest and is omitted. Denote V S :=
∏

i∈S Vi. Note the distinction:

WS = WS ⊗ 1 + 1⊗WS, whereas V S =
∏

i∈S(Vi ⊗ 1 + 1⊗ Vi).
For the case of one W , assume V T1V T2WS 6= 0 with T1 ⊂ S, T2 and S disjoint, and

|T1 ∪ T2| ≥ k. Since WS 6= 0, S ⊂ G for some gee G. The product expands as∑
T ′⊂T1

VT2VT ′ ⊗WS−T ′ +WS−T ′ ⊗ VT2VT ′ .

For this to be nonzero, we must have VT2 6= 0, and so T2 ≤ G′ for some gee G′. Thus

[k] ≤ T1 ∪ T2 ≤ G ∪G′.

For the case of two W ’s, we may assume that

V E1V E2V E3WD1∪D3 WD2∪D3 6= 0,

with D1, D2, and D3 disjoint, and Ei ⊂ Di. Also, |E1 ∪ E2 ∪ E3| = k − 1. Note that

we cannot have a factor V E4 with E4 disjoint from D1 ∪D2 ∪D3, since

WD1∪D3 WD2∪D3 = WD1∪D3 ⊗WD2∪D3 +WD2∪D3 ⊗WD1∪D3 ,

and the product of V E4 with this would be 0.

Since WDi∪D3 6= 0, we have

Ei ∪ E3 ⊂ Di ∪D3 ≤ Gi

for gees G1 and G2. Thus

G1 ∪G2 ≥ D1 ∪D2 ∪D3 ⊃ E1 ∪ E2 ∪ E3 ≥ [k − 1],
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and so G1 ∪G2 ≥ [k] unless each Di = Ei, 1 ≤ i ≤ 3. But

V D1WD2∪D3 = VD1 ⊗WD2∪D3 +WD2∪D3 ⊗ VD1

and

V D2WD1∪D3 = VD2 ⊗WD1∪D3 +WD1∪D3 ⊗ VD2 ,

and the product of these is WD3 ⊗WD3 +WD3 ⊗WD3 = 0.

Now we deal with the possibility of zero divisors which are not of the form Vi or

WS. Examples are V1V2 ⊗ 1 + V1 ⊗ V2 and W1,2 ⊗ V1 + 1 ⊗W2. The latter will be

considered instead as W1,2 ⊗ V1 + 1 ⊗ V1W1,2, which is of the same form as the first

type. By Lemma 3.3, all zero divisors can be considered as
∑
αiUi, where αi is a

monomial in Vj’s with perhaps also a single WT factor, and Ui is some Vj or WS. A

product of k + 1 zero divisors can be written as a sum of monomials times products

of k + 1 Ui’s. If this product is nonzero, then at least one of the products of k + 1

Ui’s is nonzero, and by the above argument, this implies that there is an inequality

of multisets [k] ≤ G ∪G′ for gees G and G′.

The following lemma was used in the preceding proof.

Lemma 3.3. Let Rk = Z2[U1, . . . , Uk]/(U2
1 , . . . , U

2
k ). The ideal of zero divisors in

Rk ⊗Rk is spanned by Ui ⊗ 1 + 1⊗ Ui, 1 ≤ i ≤ k.

Proof. The proof is by induction on k. The ideal is spanned by all

(3.4) UI ⊗ UJ + UI′ ⊗ UJ ′

with I and J disjoint, I ′ and J ′ disjoint, and I ∪ J = I ′ ∪ J ′, and all Ui ⊗ Ui. First

note that

Ui ⊗ Ui = (Ui ⊗ 1)(Ui ⊗ 1 + 1⊗ Ui).

If some Ui doesn’t appear in (3.4), or if it appears on the same side of ⊗ in both terms,

then (3.4) is of the claimed form by the induction hypothesis. All that remains is

UI ⊗ UJ + UJ ⊗ UI with I and J disjoint. Let i ∈ I and I1 = I − {i}. Write the

expression as

UI ⊗ UJ + UI1 ⊗ UiUJ + UI1 ⊗ UiUJ + UJ ⊗ UI .

The sum of the first two terms has the desired form, as does the sum of the last two,

both by the previous argument.
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Our zcl results depend only on the gees, and not on the value of n. (Recall m =

n−3.) However the possible gees depend on n. Of course, the numbers which occur in

the gees must be less than n, but also, if G and G′ are gees (not necessarily distinct),

then we cannot have [n−1]−G′ ≤ G∪{n}, for then G∪{n} would be both short and

long. Thus, for example, 8531 is an allowable gene, but 7531 is not, since 642 < 7531

but 7642 6< 8531.

There are 2469 equivalence classes of spaces M(`) with n = 8. Genes for these

are listed in [11]. We perform an analysis of what we can say about the zcl and

TC of these. Since n = 8, each satisfies TC(M(`)) ≤ 11 by (1.1). As we discuss

below in more detail, for most of them we can assert that zcl(M(`)) ≥ 6, and so

TC(M(`)) ≥ 7. For most of them we can only assert lower bounds for zcl, due to the

possibility of exotic products. We emphasize that the following analysis pertains to

the case n = 8.

As discussed in Proposition 2.5 and the paragraph which preceded it, there is only

one ` with a gee of size 5. This M(`) is homeomorphic to T 5 t T 5 with topological

complexity 6. This is a truly special case, as it is the only disconnected M(`).

Another very special case is the ` whose only gee is empty; i.e., its genetic code is

〈8〉. This M(`) is homeomorphic to S5, with topological complexity 2.

Other slightly special cases which we wish to exclude from the analysis below are

those whose only gee is 1, 21, 321, or 4321. For these, the zcl is ≥ 2, 3, 4, and 5,

respectively. This is sharp in the first two cases, since m ≥ 2s. All of the cases just

mentioned are excluded from the following discussion.

There are 768 `’s whose largest gee has size 4. For all of them, we can deduce only

zcl(M(`)) ≥ 6, using Theorem 3.2(a) and the following result.

Proposition 3.5. Suppose G and G′ are subsets of [7], not necessarily distinct, with

neither strictly less than the other and with max(|G|, |G′|) = 4. Assume also that it

is not the case that G = G′ = 4321, and it is not the case that [7] − G′ ≤ G ∪ {8}.
Then G ∪G′ ≥ [5] but G ∪G′ 6≥ [6].

Proof. The first conclusion follows easily from the observation that if G = 4321, then

5 ∈ G′. For the second, if G ∪ G′ ≥ [6] then applying ∪G′ to the false statement
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[7]−G′ ≤ G ∪ {8} would yield a true statement, and the ordering that we are using

for multisets has a cancellation property for unions.

There are 1569 `’s whose largest gee has size 3. For these, we again cannot rule out

exotic products, so can only assert lower bounds for zcl. By Theorem 3.1, these all

satisfy zcl ≤ 7. Of these, 929 have a gee G ≥ 531, and this satisfies G∪G ≥ [5], hence

zcl ≥ 6. In addition to these, there are 524 with distinct gees satisfying G∪G′ ≥ [5].

Combined with the 768 `’s with some |gee| = 4, 2221 of the 2469 `’s with n = 8 satisfy

zcl(M(`)) ≥ 6. There are another 116 `’s with largest gee of size 3 for which we can

only assert zcl ≥ 5. An example of a genetic code of this type is 〈8421, 843, 862, 871〉.
There are 120 `’s whose largest gee has size 2. For these, exotic products are not

possible and we can assert the precise value of zcl. Of these, 85 have a gee G ≥ 42

and since G ∪ G ≥ [4], they have zcl(M(`)) = 5. In addition to these, there are 10

having distinct gees satisfying G ∪G′ ≥ [4] and so again zcl= 5. There are 25 others

for which zcl= 4. Finally, there are 6 `’s with largest gee of size 1. These satisfy

zcl(M(`)) = 3.

In Table 3.6, we summarize what we can say about zcl when n = 8, omitting the

six special cases described earlier. Keep in mind that

1 + zcl ≤ TC ≤ 11.

In the table, s denotes the size of the largest gee, and # denotes the number of

distinct homeomorphism classes of 8-gons having the property.

Table 3.6. Number of types of 8-gon spaces
s zcl #
1 3 6
2 4 25
2 5 95
3 5, 6 or 7 116
3 6 or 7 1453
4 6, 7, 8 or 9 768

For general m(= n− 3), the largest gees (with one exception) have size s = m− 1,

and so Theorem 3.1 allows the possibility of zcl as large as 2m−1, which would yield a

lower bound for TC within 1 of the upper bound 2m+1 given by (1.1). However, this

would require many nontrivial exotic products. By an argument similar to Proposition
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3.5, all we can assert from Theorem 3.2(a) is zcl ≥ m + 1 (when s = m − 1). If

s ≤ [m/2], then we can determine the precise zcl, which can be as large as 2s+ 1, so

we can obtain m or m+ 1 as zcl, depending on parity, yielding a lower bound for TC

only roughly half the upper bound given by (1.1).

4. Exotic products in an example

When m < 2s, the previous analysis of H∗(M(`)) fails to resolve two things: (a)

products WSWS′ when |WS|+ |WS′ | < m, and (b) products ViWS when |WS|+ 1 ≤ s.

In this section, we present a simple example with m = 3 and s = 2, showing how

the detailed relation (2.3) enables us to resolve (a), but the inability to resolve (b)

prevents us from strengthening our lower bound for zcl.

Let ` have genetic code 〈631〉. Then a basis for H∗(M(`)) is:

0 1

1 V1, V2, V3,W1,2,W1,3

2 V1V2, V1V3,W1,W2,W3

3 W∅.

The previous analysis says that

(4.1) VSWS′ = δS,S′W∅ if |S| = |S ′|

and, mod 〈V1V2, V1V3〉, ViWj,k ≡ Wk if i = j, and is ≡ 0 if i 6∈ {j, k}. It also shows

that V1 V2 W1,2 V3 contains the nonzero term W∅ ⊗ V3 and so zcl(M(`)) ≥ 4. It

does not yield information about W1,2W1,3. We will show, using (2.3), that mod

〈V1V2, V1V3〉, W1,2W1,3 ≡ W1. However, the “mod 〈V1V2, V1V3〉” aspect of various

products, essentially an extension question in (2.1), prevents us from deciding whether

V1 V2 V3 W1,2 W1,3 6= 0, and hence whether zcl(M(`)) = 5.

The relations (2.3) show that a basis for ker(R|H∗(M(`))) is

1 R + V3, R + V2

2 R2 = RV2 = RV3, RV1 + V1V3, RV1 + V1V2

3 RV1V2 = RV1V3 = R2V1.

Since ViWj = δi,jW∅, we deduce that the three elements listed in grading 2 are W1,

W2, and W3, respectively, and then similarly that R+ V3 = W1,2 and R+ V2 = W1,3.
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Since

(R + V3)(R + V2) = R2 +RV2 +RV3,

we deduce that W1,2W1,3 = W1 in ker(R|H∗(M(`))).

Using that products into the top grading are given by (4.1), we find that, mod

〈V1V2, V1V3〉,

V1 V2 V3 W1,2 W1,3 ≡ W∅⊗(V3W1,3+V2W1,2)+(V3W1,3+V2W1,2)⊗W∅ ≡ 0.

If V3W1,3 or V2W1,2 contain terms V1V2 or V1V3 in H∗(M(`)) due to an extension in

(2.1), this could be nonzero, but we have no way of obtaining this information.
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