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Abstract. We note that a recent result of the second author
yields upper bounds for odd-primary homotopy exponents of com-
pact simple Lie groups which are often quite close to the lower
bounds obtained from v1-periodic homotopy theory.

1. Statement of results

The homotopy p-exponent of a topological space X, denoted expp(X), is the largest

e such that some homotopy group πi(X) contains a Z/pe-summand.1 In work dat-

ing back to 1989, the first author and collaborators have obtained lower bounds for

expp(X) for all compact simple Lie groups X and all primes p by using v1-periodic

homotopy theory. Recently, the second author ([11]) proved a general result, stated

here as Lemma 2.1, which can yield upper bounds for homotopy exponents of spaces

which map to a sphere. In this paper, we show that these two bounds often lead to

a quite narrow range of values for expp(X) when p is odd and X is a compact simple

Lie group.

Our first new result, which will be proved in Section 2, combines Lemma 2.1 with

a classical result of Borel-Hirzebruch.

Theorem 1.1. Let p be odd.

a. If n < p2 + p, then expp(SU(n)) ≤ n− 1 + νp((n− 1)!).

b. If n ≥ p2 + 1, then expp(SU(n)) ≤ n + p− 3 +
(bn−2

p−1
c−p+2

2

)
.

Here and throughout, νp(−) denotes the exponent of p in an integer, p is an odd

prime, and bxc denotes the integer part of x . All spaces are localized at p. It is
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useful to note the elementary fact that

νp(m!) = bm
p
c+ bm

p2 c+ · · · ,

and the well-known fact that νp(m!) ≤ bm−1
p−1

c.
Theorem 1.1(a) compares nicely with the following known result.

Theorem 1.2. a. ([7, 1.1]) For any prime p, expp(SU(n)) ≥ n− 1 + νp(bn
p
c!).

b. ([8, 1.8]) If p is odd, 1 ≤ t < p, and tp−t+2 ≤ n ≤ tp+1, then expp(SU(n)) ≥ n.

Thus we have the following corollary, which gives the only values of n > p in which

the precise value of expp(SU(n)) is known.

Corollary 1.3. If p is an odd prime, and n = p+1 or n = 2p, then expp(SU(n)) = n.

When n = p+1, this was known (although perhaps never published) since, localized

at p, SU(p+1) ' B(3, 2p+1)×S5× · · ·×S2p−1, the exponent of which follows from

Proposition 1.4 together with the result of Cohen, Moore, and Neisendorfer ([5]) that

if p is odd, then expp(S
2n+1) = n. Here and throughout, B(2n+1, 2n+1+q) denotes

an S2n+1-bundle over S2n+1+q with attaching map α1 a generator of π2n+q(S
2n+1), and

q = 2p− 2. Note also that the result of [5] implies that if n ≤ p, then expp(SU(n)) =

expp(S
3 × · · · × S2n−1) = n− 1.

Proposition 1.4. If p is odd, then expp(B(3, 2p + 1)) = p + 1, while if n > 1, then

n + p− 1 ≤ expp(B(2n + 1, 2n + 1 + q)) ≤ n + p.

Proof. This just combines [3, 1.3] for the lower bound and [11, 2.1] for the upper

bound.

Upper and lower bounds for the p-exponents of Sp(n) and Spin(n) can be extracted

from Theorems 1.1 and 1.2 using long-known relationships of their p-localizations

to that of appropriate SU(m). Indeed, Harris ([9]) showed that there are p-local

equivalences

SU(2n) ' Sp(n)× (SU(2n)/Sp(n)) (1.5)

Spin(2n + 1) ' Sp(n) (1.6)

Spin(2n + 2) ' Spin(2n + 1)× S2n+1. (1.7)

Combining this with Theorems 1.1 and 1.2 leads to the following corollary.

Corollary 1.8. Let p be odd.
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(1) expp(Spin(2n + 2)) = expp(Spin(2n + 1)) = expp(Sp(n)) ≤
expp(SU(2n)), which is bounded according to Theorem 1.1.

(2) expp(Sp(n)) ≥ 2n− 1 + νp(b2n
p
c!).

(3) If 1 ≤ t < p, and tp− t + 2 ≤ 2n ≤ tp + 1, then expp(Sp(n)) ≥
2n.

Proof. The second and third parts of (1) are immediate from (1.6) and (1.5), while

the first equality of (1) follows from (1.7) and the fact that expp(Spin(2n + 1)) ≥
expp(S

2n+1), which is a consequence of part (2) and (1.6). For parts (2) and (3), we

need to know that the homotopy classes yielding the lower bounds for expp(SU(2n))

given in Theorem 1.2 come from its Sp(n) factor in (1.5). To see this, we first note

that in [2, 1.2] it was proved that, if p is odd and k is odd, then

v−1
1 π2k(Sp(n); p) ≈ v−1

1 π2k(SU(2n); p). (1.9)

These denote the p-primary v1-periodic homotopy groups, which appear as summands

of actual homotopy groups. The proofs of [7, 1.1] and [8, 1.8], which yielded Theorem

1.2, were obtained by computing certain groups v−1
1 π2k(SU(n); p) with k ≡ n−1 mod

2. When applied to SU(2n), these groups are in v−1
1 π2k(SU(2n); p) with k odd, and

so by (1.9) they appear in the Sp(n) factor.

For all (X, p) with X an exceptional Lie group and p an odd prime, except (E7, 3)

and (E8, 3), we can make an excellent comparison of bounds for expp(X) using results

in the literature. We use splittings of the torsion-free cases tabulated in [3, 1.1], but

known much earlier.([10]) In Table 1, we list the range of possible values of expp(X)

when the precise value is not known. We also list the factor in the product decom-

position which accounts for the exponent. Finally, in cases in which the exponent

bounds do not follow from results already discussed, we provide references. Here

B(n1, . . . , nr) denotes a space built from fibrations involving p-local spheres of the

indicated dimensions and equivalent to a factor in a p-localizaton of a special unitary

group or quotient of same. Also, B2(3, 11) denotes a sphere-bundle with attaching

map α2, and W denotes a space constructed by Wilkerson and shown in [12, 1.1] to

fit into a fibration ΩK5 → B(27, 35) → W . Finally, K3 and K5 denotes Harper’s

space as described in [1] and [11].
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Theorem 1.10. The homotopy p-exponents of exceptional Lie groups are as in Table

1.

Table 1. Homotopy exponents of exceptional Lie groups

X p expp(X) Factor Reference

G2 3 6 B2(3, 11) [3, 1.3],[11, 2.2]

G2 5 6 B(3, 11)

G2 > 5 5 S11

F4, E6 3 12 K3 [1, 1.6], [11, 1.2]

F4, E6 5, 7 11, 12 B(23− q, 23)

F4, E6 11 12 B(3, 23)

F4, E6 > 11 11 S23

E7 5 18, 19, 20 B(3, 11, 19, 27, 35) factor of SU(18)

E7 7 17, 18, 19 B(11, 23, 35) factor of SU(18)

E7 11, 13 17, 18 B(35− q, 35)

E7 17 18 B(3, 35)

E7 > 17 17 S35

E8 5 30, 31 W [6, 1.1],[12, 1.2]

E8 7 29, 30, 31, 32 B(23, 35, 47, 59) [3, 1.4],Proposition 2.3

E8 11− 23 29, 30 B(59− q, 59)

E8 29 30 B(3, 59)

E8 > 29 29 S59

2. Proof of Theorem 1.1

In [11, Lemma 2.2], the second author proved the following result.

Lemma 2.1. ([11, 2.2,2.3]) Suppose there is a homotopy fibration

F → E
q−→S2n+1

where E is simply-connected or an H-space and | coker(π2n+1(E)
q∗−→ π2n+1(S

2n+1))| ≤
pr. Then expp(E) ≤ r + max(expp(F ), n).

In [11, 2.2], it was required that E be an H-space, but [11, 2.3] noted that if E is

not an H-space, the desired conclusion can be obtained by applying the loop-space
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functor to the fibration. We require E to be simply-connected so that we do not loop

away a large fundamental group. We now use this lemma to prove Theorem 1.1.

Proof of Theorem 1.1. The proof is by induction on n. Let the odd prime p be im-

plicit, and let SU ′(n) denote the factor in the p-local product decomposition ([10]) of

SU(n) which is built from spheres of dimension congruent to 2n− 1 mod q. By the

induction hypothesis, the exponents of the other factors are ≤ the asserted amount.

We will apply Lemma 2.1 to the fibration

SU ′(n− p + 1) → SU ′(n)
q−→S2n−1.

In order to determine | coker(π2n−1(SU ′(n))
q∗−→ π2n−1(S

2n−1))|, we use the classical

result of Borel and Hirzebruch ([4, 26.7]) that

π2n−2(SU(n− 1)) ≈ Z/(n− 1)!.

When localized at p, it is clear that its p-component Z/pνp((n−1)!) must come from the

SU ′(n−p+1)-factor in the product decomposition of SU(n−1), since π2n−2(SU(n−1))

is built from the classes αi ∈ π2n−2(S
2n−1−iq)(p). Thus

π2n−2(SU ′(n− p + 1)) ≈ Z/pνp((n−1)!),

and the exact sequence

π2n−1(SU ′(n))
q∗−→ π2n−1(S

2n−1) → π2n−2(SU ′(n− p + 1))

implies

νp(| coker(q∗)|) ≤ νp((n− 1)!). (2.2)

(a.) By the induction hypothesis, expp(SU ′(n− p + 1)) ≤ n− p + νp((n− p)!). By

hypothesis, n−p < p2 and hence νp((n−p)!) ≤ p−1. Thus expp(SU ′(n−p+1)) ≤ n−1,

and so by 2.1 and (2.2)

expp(SU ′(n)) ≤ νp(| coker(q∗)|) + n− 1 ≤ νp((n− 1)!) + n− 1,

as claimed.

(b.) By (a), part (b) is true if p2 + 1 ≤ n ≤ p2 + p − 1. Let n ≥ p2 + p, and

assume the theorem is true for SU ′(n−p+1). Then by Lemma 2.1 and the induction

hypothesis

expp(SU ′(n)) ≤ ν((n− 1)!) + n− p + 1 + p− 3 +

(bn−p−1
p−1

c − p + 2

2

)
.
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Note that even if expp(SU ′(n − p + 1)) happened to be less than n − 1, our upper

bound for it is ≥ n−1, and so this bound for expp(SU ′(n)) is still a correct deduction

from 2.1.

Since νp((n− 1)!) ≤ bn−2
p−1
c, we obtain

expp(SU ′(n) ≤
⌊
n− 2

p− 1

⌋
+ n− 2 +

(bn−2
p−1
c − p + 1

2

)

=

⌊
n− 2

p− 1

⌋
+ n− 2 +

(bn−2
p−1
c − p + 2

2

)
−

(bn−2
p−1
c − p + 1

1

)

= n + p− 3 +

(bn−2
p−1
c − p + 2

2

)
,

as desired.

The result in part (b) could be improved somewhat by a more delicate numerical

argument.

Part (b) of the following result was used in Table 1.

Proposition 2.3. Let p = 7.

a. exp7(B(23, 35, 47)) ≤ 25.

b. exp7(B(23, 35, 47, 59)) ≤ 32.

Proof. The thing that makes this require special attention is that these spaces are

not a factor of an SU(n), because they do not contain an S11. There are fibrations

B(23, 35) → B(23, 35, 47) → S47

and

B(23, 35, 47) → B(23, 35, 47, 59) → S59.

Since, localized at 7, π46(S
23) ≈ π46(S

35) ≈ Z/7, we have |π46(B(23, 35))| ≤ 72, and

similarly |π58(B(23, 35, 47))| ≤ 73. (In fact, it is easily seen that these are cyclic

groups of the indicated order.) Using 2.1 and that exp7(B(23, 35)) ≤ 18 by 1.4, we

obtain

exp7(B(23, 35, 47)) ≤ 2 + max(18, 23) = 25,

and then

exp7(B(23, 35, 47, 59)) ≤ 3 + max(25, 29) = 32.
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