
GEODESIC COMPLEXITY
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Abstract. Geodesic complexity has to do with motion planning
when you require the paths to be minimal geodesics. We survey
many of the interesting results obtained by David Recio-Mitter.
Then we focus on two cases, the cube and the 2-point ordered
configuration space of a star graph, with a fairly thorough sketch
of the proof of the geodesic complexity of each.

1. Introduction

Michael Farber’s concept ([11]) of the topological complexity, TC(X), of a topolog-

ical space X involves finding the smallest partition of X × X into sets S on which

you can make a continuous choice of a path from x0 to x1 for all (x0, x1) ∈ S. In

many cases, the paths which appear in an optimal solution are somewhat indirect or

roundabout.

In [15], David Recio-Mitter had the idea of requiring that, if X is a metric space,

the paths be minimal geodesics; i.e. shortest paths between their endpoints. He

defined the geodesic complexity, GC(X), for a metric space X as follows.

Definition 1.1. If X is a metric space, GC(X) is the smallest integer k such that

there is a partition of X × X into locally compact sets Ei, 0 ≤ i ≤ k, such that for

each i there is a continuous function σi : Ei → P (X), where P (X) is the space of all

paths in X, and for all (x0, x1) ∈ Ei, σi(x0, x1) is a (minimal) geodesic from x0 to

x1. Each σi is called a geodesic motion planning rule (GMPR).

As we are only interested in minimal geodesics, we will omit the word “minimal.”

In the examples that we will be discussing, the lengths of paths will be rather

intuitive, but the formal definition of length is as follows.
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Definition 1.2. Let (X, d) be a metric space. The length of a path σ : [0, 1]→ X is

defined as

ℓ(σ) = sup
0≤t0≤···≤tN=1

N∑
i=1

d(σ(ti−1), σ(ti)),

where the supremum is taken over all finite partitions of [0, 1]. A path σ is a geodesic

if ℓ(σ) ≤ ℓ(τ) for all paths τ with the same endpoints as σ.

Clearly TC(X) ≤ GC(X). In this survey, we will discuss many examples in which

equality occurs, and several in which GC(X) is strictly greater than TC(X). The

simplest example of equality is the sphere Sn with the usual Euclidean metric. The

standard motion planning rules (e.g., [11, Theorem 8]) use paths which are geodesics,

and so we have the elementary result that with the Euclidean metric,

GC(Sn) = TC(Sn) =

{
1 n odd

2 n even.

Similarly, the n-torus T n = S1 × · · · × S1, with n factors, in the product metric

(called the flat metric in [15] since it is the metric when T n is thought of as a quotient

of Rn) uses geodesics in its standard motion planning rules ([11, Theorem 12]) and

hence satisfies

GC(T n
flat) = TC(Tn) = n.

This leads to two surprising examples of GC > TC proved in [15].

In [15, Theorem 5.1] it is proved that, with T = T 2, the usual torus,

GC(Temb) = 3 > GC(Tflat) = 2. (1.3)

Here Temb is the usual embedded torus with the Euclidean metric,

Temb =

{
(x, y, z) ∈ R3

∣∣(√x2 + y2 − 2
)2

+ z2 = 1

}
.

The delicate proof of (1.3) relied on the analysis in [14] of cut loci of points in the

embedded torus. The concept of the cut locus of a point of a metric space is intimately

related to the study of geodesic complexity.

Definition 1.4. The cut locus of a point P in a metric space is the closure of the set

of points Q for which there is more than one geodesic from P to Q.
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The other interesting related example in [15] is the construction of a metric g on

Sn+1 for which GC(Sn+1, g) ≥ n, hence yielding examples in which the difference

GC−TC is arbitrarily large. We sketch the construction. Embed the torus T n in

Sn+1 with a neighborhood N2 homeomorphic to T n × (−1, 1). Give the subset N1

which corresponds to T n × (−1
2
, 1
2
) under the homeomorphism the product metric

T n
flat× (−D,D), where D is the length of the longest geodesic in T n

flat. Then geodesics

between points of T n×{0} must stay in N1 and hence be geodesics in Sn+1. Use the

usual metric on Sn+1 outside N2, and construct a metric on N2−N1 to yield a metric

g on all of Sn+1. Then GC(Sn+1, g) ≥ GC(T n
flat) = n.

Another interesting example in [15] is the Klein bottle K with its metric as a

quotient of a square. In [15, Theorem 4.5] direct proofs of both inequalities of

GC(K) = 4

are given; i.e., it did not rely on the known result that TC(K) = 4 to obtain the

lower bound. The proof in [3] that TC(K) ≥ 4 involved quite complicated algebraic

calculations, and, of course, implies that GC(K) ≥ 4, but the proof in [15] is of a

very different, geometric, nature. The proof that we give of Theorem 3.6 is modeled

on it. In [10], we adapted this proof to show that for the n-dimensional Klein bottle

Kn, GC(Kn) = 2n. It is interesting that TC(Kn) is not known. It is ≥ n+2; a recent

arXiv posting ([4]) argues that it is ≤ 3
2
n+ 2.

In the seminal paper [15], Recio-Mitter showed that if C denotes the (boundary

of the) cube, then GC(C) ≥ 3. He called it the flat sphere, since it is a metric on a

space homeomorphic to S2. Since TC(S2) = 2, this is another instance of GC > TC.

In Section 3, we sketch the proof in [6] that, in fact,

GC(C) = 4. (1.5)

The geodesic complexity of 2-point configuration spaces has also been studied, with

GC = TC in all cases known to the author. If X is a topological space, the ordered

n-point configuration space F (X,n) is defined by

F (X,n) = {(x1, . . . , xn) ∈ Xn : xi ̸= xj if i ̸= j},
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while the unordered configuration space C(X,n) is the quotient of F (X,n) by the

action of the symmetric group. Then GC(F (X,n)) (resp. GC(C(X,n))) can be in-

terpreted to be the number of geodesic motion planning rules (minus 1) required to

move n tiny robots without collision between any points of X if you care (resp. don’t

care) about which robot will be at each point.

In [5], geodesics in F (Rn, 2) and C(Rn, 2) were studied. There is a subtlety that

F (Rn, 2) is not geodesically complete.

Definition 1.6. A metric space X is geodesically complete if there is at least one

minimal geodesic between any two points of X.

If the linear path in Rn from a1 to b1 and the one from a2 to b2 intersect for the

same parameter value t, then there is no geodesic in F (Rn, 2) from (a1, a2) to (b1, b2)

since the linear path between them is not a path in F (Rn, 2), but there are paths

between them in F (Rn, 2) arbitrarily close to the linear one. So we replace F (Rn, 2)

by the homotopy equivalent space Fε(Rn, 2) consisting of pairs (a1, a2) satisfying

d(a1, a2) ≥ ε, where d is the Euclidean metric in Rn.

The metric on Fε(Rn, 2) is induced from the Euclidean metric on Rn × Rn, while

the metric on C(Rn, 2) is

d({a1, a2}, {b1, b2}) = min
(
d
(
(a1, a2), (b1, b2)

)
, d
(
(a1, a2), (b2, b1)

))
.

Both spaces are geodesically complete. The spaces Fε(Rn, 2) and C(Rn, 2) have the

homotopy type of Sn−1 and real projective space RP n−1, respectively, and it was

shown in [5] that

GC(Fε(Rn, 2)) = TC(F(Rn, 2)) = TC(Sn−1)

and

GC(C(Rn, 2)) = TC(C(Rn, 2)) = TC(RPn−1),

by constructing explicit GMPRs.

It was shown in [13] that, if n ̸∈ {1, 3, 7}, then TC(RPn) equals the immersion

dimension of RP n, the dimension of the smallest Euclidean space in which RP n can

be immersed, a number which is known for many values of n and unknown for many

others. See [7] for tables. In [15] it was noted that, although the motion planning rules

in RP n described in [13] are not geodesic, they can easily be replaced by GMPRs.
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It is interesting that the GMPRs in C(Rn, 2) do not rely on GMPRs in RP n−1, but

rather use just ordinary motion planning rules in RP n−1 to make continuous choices

of geodesics in C(Rn, 2).

An important example of configuration spaces occurs when X is a graph G; i.e.,

a set of vertices and edges between some of them. Then motion planning rules in

F (G, n) can be thought of as moving n robots without collision along a system of

wires, as in a warehouse. In [9], we proved that if G is a star graph (i.e., a graph with

a single vertex and no cycles) with at least four edges, then

GC(Fε(G, 2)) = TC(F(G, 2)) = 2, (1.7)

and if G is a tree (i.e., a graph with no cycles), then

GC(C(G, 2)) = TC(C(G, 2)) = 2.

Here again, we need to require that the two points remain a distance ε apart in

F (G, 2) in order that geodesics always exist. We will discuss this in more detail in

Section 2.

In the final two sections, we focus on the cube and the 2-point ordered configuration

space of a star graph, because the two cases differ in many respects: configuration

space versus familiar geometric space, GC = TC in one but not the other, ε needed in

one, direct argument for lower bound needed in the other. We give explicit GMPRs,

of very different types, in the two, and give fairly complete sketches of proofs of (1.5)

and (1.7).

2. Two robots moving on a star graph

In this section, we present many of the main ideas in [9] regarding GC(Fε(G, 2))

when G is a star graph with at least four edges. The three-edge case, called a Y

graph, is also considered there, but we shall omit that. One issue is the metric, which

is inherited from a metric on G×G. Any tree graph has an obvious metric, given by

shortest distance along the graph, but there are several well-known metrics on G×G.

Two are considered in [9]. The one that we will use here is the ℓ2-metric, defined by

d2((a1, a2), (b1, b2)) =
√
d(a1, b1)2 + d(a2, b2)2.
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In (G × G, d2), there is a unique geodesic from (a1, a2) to (b1, b2) given by uniform

motion from a1 to a2 simultaneous with uniform motion from b1 to b2. That will often

involve a collision, which must be avoided in F (G, 2). Avoiding collision is usually

accomplished by moving one particle onto another arm so that the other can pass. In

such a case, there is no geodesic in F (G, 2), since the motion onto the other arm can

be arbitrarily small. Hence, the need for ε.

The other metric on F (G, 2) used in [9] is the ℓ1-metric, defined by

d1((a1, a2), (b1, b2)) = d(a1, b1) + d(a2, b2).

Here it is the sum of the distances moved by the two particles that determines the

length of a path in the configuration space, so simultaneous motion is not required,

and there are many parametrizations yielding the same distance. In this survey, we

will consider only the ℓ2 metric.

In this paper, we diverge slightly from the treatment in [9] and depict the motion

as of a disk of diameter ε (particle 1) and a square of side length ε (particle 2).

This differs from the depiction in [9] (e.g., their Figure 1), where ε is unrelated to

the depicted size of the point particles. Our model would be an accurate depiction

if the arms did not make angles with one another. But because of the thickness of

the disk and square outside of the graph, if they are on two edges near the vertex,

they can intersect even though the distance along the graph between their centers is

greater than ε. We should just think of the intersection with the graph of the disk

and square. We can think of them as worms of length ε moving on the graph, and we

will sometimes use the name “worm” to refer to the particles. See Figure 2.1 where

the left diagram shows the and overlapping even though the associated worms do

not. You should think of the and as visual approximations of the worms, which

are hard to see. When a worm is close to a vertex, it grows temporary arms reaching

onto all edges to a distance ε/2 from its center. This is illustrated in the right side

of Figure 2.1.
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Figure 2.1. Worms and overlapping approximation, and arms.

The distance traveled by a particle is that of the center point, and the distance

traveled by the two particles in uniform motion between two pairs of points on the

graph is
√

D2
1 +D2

2, where Di is the distance traveled by particle i. The disk and

square can be tangent to one another, but cannot overlap more than that along the

graph. We will depict the first particle by a round black disk, and its destination by

a round white disk, while the second particle and its destination will be depicted by

black and white squares.

We introduce our ideas with a specific numerical example. Suppose ε = 1, so that

the radius of the particles is 0.5. We consider the configuration on the left side of

Figures 2.2 and 2.3, with distance of the center of each particle and of each destination

from the vertex as indicated. We include only three arms since other arms are not

needed in the geodesic motion. Clearly direct motion to the destination without

collision is impossible, so one particle will have to move to the third arm to let the

other pass by.

Figure 2.2. moves onto third arm.

→

3.4

1.3

2.5

4

→ →

P1 P2 P3

In Figure 2.2, we wish to move onto the third arm so that can pass by. To

move directly from the initial position to position P2 with uniform motion of both

particles, would move 4.4 units while moves 4. So is moving faster than ,
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and this uniform motion to P2 cannot be done (the worms would overlap prior to

arriving at P2). So instead, they move uniformly to position P1, and then at equal

speeds from P1 to P2. Uniform motion from P2 to the destination would have

moving 3.5 units, while moves only 1.3. So is moving faster and would overtake

immediately. Hence they move from P2 to P3 at equal speeds, and from there to

their final destination. The total distance traveled is
√
32 + 3.42 +

√
2 +
√
2 +
√
0.32 + 2.52 = 9.88.

If instead, we wish to move onto the extra arm with direct uniform motion to

P5 in Figure 2.3, it would be moving faster than , and hence they would overlap

prior to reaching P5. So instead they first move to P4 and then to P5. From P5 to

the destination, will be moving faster, so they can go directly from P5 to their

destination. The total distance is
√
42 + 2.42 +

√
2 +
√
2.32 + 2.52 = 9.476,

so the latter path is the geodesic.

Figure 2.3. moves onto third arm.

→

3.4

1.3

2.5

4

→

P4 P5

The configurations ((a1, a2), (b1, b2)) in F (G, 2) are first partitioned into sets X1,

X2, X3, and X4, defined by how many of the (open) arms contain at least one of a1,

a2, b1, and b2. We will subdivide the sets Xi and group these into the three sets E0,

E1, and E2 on which there are GMPRs, as required for proving

GC(Fε(G, 2)) ≤ 2.
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The lower bound,

2 = TC(F(G, 2)) = TC(Fε(G, 2)) ≤ GC(Fε(G, 2)),

was proved in [12].

The first set, E0, is a subset of X
−
2 , which is defined to be the subset of X2 on which

the relative orientation of a1 and a2 is opposite to that of b1 and b2. This means that

direct motion from a1 to b1, and a2 to b2, will cause the particles to collide, and so

motion of one onto a different arm to allow the other to pass is required. There are

at least two arms onto which this extra motion could take place. In order to have a

continuous selection of geodesics, we make a convention about this. We number the

arms, from 1 to N (the total number of arms), and then say that, for configurations

in X−
2 , the extra motion will be onto the unused arm with the smallest number. We

compare the length of the path if a1 moves onto the extra arm with that if a2 moves

onto it, taking into account the possible additional motion such as that illustrated

in Figures 2.2 and 2.3. For each, this length will be a sum of two or more square

roots of sums of squares. It is possible that the two sums in this comparison might

be equal. The set E0 consists of those in which they are not equal, which we call Xn
2 .

For these configurations, we choose the path with the shorter length. Although this

wasn’t really a “unique” geodesic, due to the choice of arm, it can be considered to

be, by removal of the other arms, and it follows from [2, Lemma 3.12] that unique

geodesics vary continuously with their endpoints. This defines the GMPR on E0.

The second set with a GMPR, E1, is the union X−
1 ∪ Xeq

4 . Here X−
1 consists of

configurations in X1 for which the relative orientation of a1 and a2 is opposite to that

of b1 and b2. For X4 configurations, we consider direct motion from a1 to b1 and from

a2 to b2. If this avoids collision, it is the geodesic, and will later be placed in set Xn
4 . If

not, we compare the path length when a1 moves through the vertex first (pictured in

Figure 2.4; the “if necessary” intermediate motion is done if is moving faster than

in the middle part of Figure 2.4, in which case the arrows in the middle diagram

will not be followed.) with that when a2 passes through first. The configuration is in

Xeq
4 if these two lengths are equal.
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Figure 2.4. a1 moves through first

→

if nec.

For configurations in Xeq
4 , we choose the geodesic which moves a1 through the

vertex first. This is a GMPR on Xeq
4 . For configurations in X−

1 , if they are on arm

i, the particle closer to the vertex moves through onto arm i + 1, while the other

particle moves to the vertex. Then, at equal speed, they move into the position on

the right side of Figure 2.5, using arm i+ 2, and then to their destination. This is a

GMPR on X−
1 .

Figure 2.5. Motion in X−
1

i i i

i+ 2 i+ 2 i+ 2

i+ 1 i+ 1 i+ 1→ →

We have defined GMPRs on Xeq
4 and X−

1 . These can be combined to yield a GMPR

on their union, E1, because the two sets are topologically disjoint.

Definition 2.6. Two subsets of a topological space are topologically disjoint if no

point of one is the limit of a sequence of points of the other.

Continuous functions on topologically disjoint sets of a metric space can be combined

to give a continuous function on the union. The limit of a sequence of configurations
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in X1 will have all four points on a single closed arm, while the limit of a sequence of

configurations in X4 cannot have more than one point on any open arm.

The third set with a GMPR consists of everything else, which is

E2 = Xn
4 ∪X3 ∪X+

2 ∪X+
1 ∪Xeq

2 .

We will show that configurations in the first four of these sets have unique geodesics.

By [2, Lemma 3.12], unique geodesics vary continuously, so we have a GMPR on

Xn
4 ∪X3∪X+

2 ∪X+
1 . We will show that Xeq

2 has a GMPR and is topologically disjoint

from the four other sets. Thus we have a GMPR on all of E2.

The sets X+
1 and X+

2 are the subsets of X1 and X2 in which the relative orientation

of a1 and a2 agrees with that of b1 and b2. The direct path from (a1, a2) to (b1, b2) is

clearly the unique geodesic on these. The set Xn
4 is the complement in X4 of the set

Xeq
4 considered earlier (e.g., Figure 2.4). The set Xn

4 includes configurations in which

direct motion avoids collision, as well as those in which the two paths, Figure 2.4 and

its analogue, have differing total lengths. Choosing the shorter of the two unequal

paths clearly gives a unique geodesic, yielding a GMPR on Xn
4 by [2, 3.12].

The set Xeq
2 equals X2 −Xn

2 , where Xn
2 was described in E0. There we explained

the choice of the arm which will be used for passing. Now the two choices of which

passes first have equal length. We choose the one in which a1 passes first. That yields

a GMPR on Xeq
2 . That Xn

2 is topologically disjoint from Xn
4 ∪X3∪X+

2 ∪X+
1 is quite

clear, with the only slightly delicate point being that a sequence of X3 configurations

can approach an X2 configuration with one of a1, a2, b1, or b2 at the vertex. However,

such a configuration cannot have two equal geodesics because if ai or bi is at the

vertex, one can verify that the path moving ai onto the third arm is the shorter of

the two.

Finally, we show that X3 configurations have unique geodesics. This is the most

complicated set, as there are three cases, and one of them has four subcases. The

three cases are shown in the left side of Figure 2.7; they depend on whether the two on

the same arm have the same color and whether they have the same shape. Distances

from the vertex can vary greatly from what is pictured.
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Figure 2.7. Three cases for X3

Case 1 Case 2 Case 3 P Q

In Case 1, particles move uniformly toward their destination. However if, due

to moving faster, the outer one overtakes the inner one, then, instead, they move

uniformly to P , and then to their destination. This is a unique geodesic. In Case

2, they move uniformly toward their destination unless both and are very close

to the vertex, in which case the particles move uniformly to Q, and then on to their

destination. This defines a unique geodesic.

Now we consider Case 3. Sometimes the particles can move uniformly to their

destination without collision. If so, that’s what they do. Subcase 3a, in the left

side of Figure 2.8, is where they would collide, so instead move uniformly to A, from

which they can move directly to their destination. Subcase 3b, in the right side of

Figure 2.8, is where again they must move to A, but then, because in direct motion

to the destination the trailing particle would have to move faster, they instead move

at equal speed from A to B, before moving to their destination.

Figure 2.8. Two subcases for X3

Subcase 3a A Subcase 3b B

−→ → A →

In the final subcase, 3c, illustrated in Figure 2.9, uniform motion to the destination

would again result in a collision, as would uniform motion from configuration A

of Figure 2.8 to the destination, so we move directly to B above and then to the

destination. We could go to A as an intermediate, but that would be a longer path.
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The difference between this and 3b is that in 3b you could not go directly to B because

is moving faster. A different visualization of Case 3 can be seen in [9, Figure 5].

Figure 2.9. Subcase 3c

−→ B

This completes our description of GMPRs on E0, E1, and E2, yielding GC(Fε(G, 2)) ≤
2.

3. Geodesic complexity of a cube

In this section, we sketch the proof from [6] that, with C a cube,

GC(C) = 4.

The proof relies heavily on the analysis in [8] of cut loci (Definition 1.4) in the cube,

and we begin with a discussion of this.

We begin with a visual example. Figure 3.1 shows a cube with the numbering of

corner points that we will use, with the cut locus of the midpoint P of edge 5-8 shown

in bold red. Our cut loci will usually be displayed as on the right side of the diagram.

Figure 3.1. Cut locus of P

1 2

6

7

4

8

5

3sP
7

5

1

6

8

3

2

4

ss
QQ

The path chosen from a point P to a point Q in its cut locus will be important. For

example, if Q is the highlighted point in Figure 3.1, the reader can visualize the four

types of paths from P to Q. For example, the type passing through the 1-4 region,
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between the edges ending at 4 and at 1 in the diagram on the right side, will pass

through the face on the left side of the cube and then through the front face, while

the type which we see as passing through the 1-5 region will go down to the 1-5 edge

of the cube, then along the bottom of the cube to the 1-2 edge, and then up along

the front face to point Q.

The method that we use to find the cut loci is that of star unfolding and Voronoi

diagrams developed in papers such as [1]. We illustrate with the same example we

used in [8] and [6]. We unfold the cube, except for the 1234 face, and draw the

shortest segment from P to each of the corner points. The diagram decomposes as

eight polygons with P at a vertex of each. In a new drawing, we attach four of these

polygons to the 1234 face, and then the other four polygons to now-exposed edges.

This is the star unfolding of P . Eight of its sixteen vertices are different placements

Pα of the point P in unfoldings of the cube, while the others correspond to corner

points of the cube.

Figure 3.2. Star unfolding

3

2

1

4 3

2

1

4

P

5

8

6

7 1 2

34

5

6

7

8

P1

P2

P3

P4

P5

P6

P7

P8

I

5 2

1 6

4 7

8 3

We partition the star unfolding into subsets which are closer to one Pα than to

the others. This is called the Voronoi cell of Pα. The cut locus of P consists of
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points bounding two Voronoi cells. This is called the Voronoi diagram. These will

always be portions of the perpendicular bisector of the segment connecting some Pα

and Pβ. The delicate part is seeing how they intersect. There is a short segment in

the diagram bounding the Voronoi cells of P3 and P5, and an almost-indiscernible

segment bounding the cells of P5 and P7. We are concerned with the combinatorial

structure of the cut locus, and so would draw this as in the bottom portion of Figure

3.2.

To visualize paths from P to points in its cut locus requires various unfoldings of

the cube. We illustrate in Figure 3.3 the easiest of these, the paths from P5 in the

right diagram of Figure 3.2, which we will think of as from the 6-7 region in the

schematic diagram at the bottom of Figure 3.2.

Figure 3.3. Paths from P to cut locus

3

2

1

4 3

2

1

4

P

5

8

6

7 4

1

We explain in [8] how we were able to partition the face of the cube into 193

connected sets (of dimension 0, 1, and 2) on which the combinatorial structure of the

cut locus is constant. These are displayed in Figure 3.4, while Figure 3.5 is a stretched

blowup of the left side of the left quadrant. In [8] we present the combinatorial

structure of the cut locus in each region and curve of Figure 3.5, as well as equations

of the curves.

Figure 3.4. Regions in a face
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Figure 3.5. Regions in left quadrant

Now we sketch the proof that GC(C) ≥ 4 in the following result.

Theorem 3.6. It is impossible to partition C×C as E0⊔E1⊔E2⊔E3 with a GMPR

σi on each Ei.

Proof. Assume such a decomposition exists. In Figure 3.7, we display the combinato-

rial structure of the cut locus of the corner point V8 (in the upper left corner in Figure

3.5) and of points in region D and on the curve DE bounding regions D and E. As

points in region D or curve DE approach V8, the vertical segment in the depiction of

their cut locus in Figure 3.7 shrinks to a point, while as points in D approach DE,

the vertical segment going up from edge 6 shrinks to a point.
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Figure 3.7. Cut loci of V8, DE, and D
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Let E0 be the set containing (V8, V2). We assume that σ0(V8, V2) passes through the

region bounded by edges 4 and 8 as it approaches V2. If it passed through one of the

upper regions, we would use a region different than D in our proof. For points P on

the DE curve, let QP be the indicated point in the DE diagram. As P approaches

V8, if (P,QP ) were in E0, then σ0(P,QP ) would have to approach σ0(V8, V2). But

σ(P,QP ) cannot pass through the region between edges 4 and 8, so we conclude that

there must be a sequence Pn approaching V8 on DE such that (Pn, QPn) are in the

same set not equal to E0. Let E1 be the set containing these points. By restricting,

we may arrange that σ1(Pn, QPn) all pass through the same region as they approach

their QPn , and we will assume this is the region between edges 6 and 7. If it was a

different region, we would vary the argument, possibly using region E instead of D.

By a similar argument, there must be sequences Pn,m in D approaching Pn such

that, with QPn,m the indicated point in the D diagram, (Pn,m, QPn,m) are all in the

same set not equal to E1, and, since a diagonal sequence Pn,n approaches V8, this set

cannot be E0, so must be a different set, E2. We assume that σ2(Pn,m, QPn,m) pass

through the region between edges 5 and 2. The same argument works if it was one

of the other regions.

For a sequence of points Qn,m,ℓ approaching QPn,m along the edge in the D diagram

going down from the indicated point, σ(Pn,m, Qn,m,ℓ) must approach Qn,m,ℓ from the

left or right, so the limit of these cannot equal σ2(Pn,m, QPn,m). Hence there must be a

sequence of these in the same set not equal to E2. By utilizing diagonal subsequences,

we deduce this set is not E1 or E0. So it must be E3. By restricting, we may assume

that all σ3(Pn,m, Qn,m,ℓ) come from either the left side or right side, which we will say

is the left side.



18 DONALD M. DAVIS

Choose pointsQn,m,ℓ,k in the complement of the cut locus of Pn,m approachingQn,m,ℓ

from the right side of the vertical cut-locus segment containing Qn,m,ℓ. By restricting,

we may assume that all (Pn,m, Qn,m,ℓ,k) are in the same Ei. Then σi(Pn,m, Qn,m,ℓ,k)

is the unique geodesic between these points, and must be coming from the region

bounded by edges 2 and 6. Since σ3(Pn,m, Qn,m,ℓ) comes from the opposite side, i

cannot equal 3. By diagonal arguments, it cannot equal 0, 1, or 2. Therefore there

must be another region E4.

We complete the proof of (1.5) with the following. We will sketch the proof, refer-

ring the reader to [6] for quite a few details.

Theorem 3.8. There is a decomposition

C × C = E0 ⊔ E1 ⊔ E2 ⊔ E3 ⊔ E4

into locally compact sets Ei with a GMPR σi on each.

Proof. We start by letting E0 be the set of pairs (P,Q) for which there is a unique

geodesic from P to Q, and let σ0(P,Q) be that path.

Some adjacent regions in Figure 3.5 have the same combinatorial structure for the

top halves of their cut loci, and so are combined, leading to the forms in Figure 3.9.

The circles will be explained later. The A is for the big region in the left quadrant

of Figure 3.4, and E is the left edge. The ∗ is vertex I ′CH ′F ′E ′ in Figure 3.5. It is

approached by all the diagrams except E , but its vertices will be in a separate Ei,

so that compatibility is not a concern. The bottom halves of these cut loci have a

similar form.
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Figure 3.9. Top halves of cut loci
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Our set E1 consists of all (P,Q) such that Q is in the interior of an edge of the

cut locus of P or is a degree-2 vertex, such as vertex 2 in E in Figure 3.9. The cut

loci are all divided into a top half and bottom half, up to rotation. We choose an

orientation of the cube and use that to consider a rotation of each cut locus around

a central point between the two halves. We choose σ1(P,Q) to be the path in the

direction of the rotation. See Figure 3.10. Regarding the segments connecting the

two halves of cut loci: each edge of the cube bounds two quadrants, and all cut loci

in those two quadrants have parallel connecting segments. Arbitrarily make a choice

of direction for the approach to the connecting segments in each pair of quadrants.

These quadrant pairs are separated by diagonals of faces. The connecting segments

of the cut locus of points on a diagonal are a single degree-4 vertex, which is in E4.
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So compatibility of σ1 on the connecting segments of the various quadrant pairs is

not an issue.

Figure 3.10. Rotation direction for σ1
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The set E2 consists of the 56 points (P,Q) such that Q is the corner point of the

cut locus of P of degree 5 or 6. Since this is a discrete set, the function σ2 can be

defined arbitrarily. Eight of these have P a corner point and Q the opposite corner

point. The others are where P is the analogue of the point ∗ of Figure 3.9 in any of

the 48 half-quadrants and Q the degree-5 vertex in its cut locus.

Degree-3 and -4 vertices of cut loci are placed in the final two sets, E3 and E4,

but there is not a direct correspondence between the 3’s and 4’s. Refer to Figure 3.9,

for top halves of cut loci in the left quadrant of the 5678 face. There, vertices which

can be approached from the region between edges 2 and 5 are approached that way,

and are in set E3, indicated by , while others which can be approached from the

region between edges 2 and 6 are approached that way, and are in E4, indicated by

. Remaining cases, one each in the D, DF , and F diagrams, are placed as indicated

there. One readily checks the continuity of these approaches within each set. It is

not difficult to show that a similar grouping works on bottom halves of cut loci and

in other quadrants. Detailed explanations are provided in [6].
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