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Abstract. We determine a nice simple formula for the largest
Euclidean space for which there is an orientable n-manifold with a
nonimmersion detected by Stiefel-Whitney classes. For Spin man-
ifolds, we prove the analogue of the upper bound and establish the
complete answer for n ≤ 23 and 32 ≤ n ≤ 33. Results similar to
many of these were obtained some 50 years ago, but in a much
less tractable form. The sharp results for Spin manifolds require
detailed calculations of ko-homology groups of mod-2 Eilenberg
MacLane spaces.

1. Introduction

This work was motivated by a question asked by Mike Hopkins after Ralph Co-

hen’s talk ([7]) on immersions of manifolds at a distinguished Harvard lecture series.

Cohen had discussed aspects of his proof ([6]) that every n-manifold can be immersed

in R2n−α(n), where α(n) denotes the number of 1’s in the binary expansion of n. Hop-

kins asked whether there were similar results for other classes of manifolds, such as

orientable or Spin manifolds. Work was done on this question long ago for orientable

manifolds in [10], [3], and [12], and for Spin manifolds in [13] and [15]. We extend

their results and reinterpret in a much more tractable form, with a self-contained

proof.

By “manifold” we always mean a compact connected smooth manifold without

boundary. Let wi denote the ith Stiefel-Whitney class of the stable normal bundle

of a manifold. A standard result says that if an n-manifold M immerses in Rn+c,

then wi(M) = 0 for i > c. We say that a nonimmersion of an n-manifold in Rn+c is

detected by Stiefel-Whitney classes if wi(M) 6= 0 for some i > c.
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Our user-friendly reinterpretation of [12, Theorem 1] is as follows.

Theorem 1.1. Let εn = 0 if n ≡ 1 mod 4, and otherwise εn = 1. There exists

a nonimmersion of an orientable n-manifold in R2n−k−1 detected by Stiefel-Whitney

classes if and only if k ≥ α(n) + εn.

Thus for n ≡ 1 mod 4, the restriction of Cohen’s result to orientable manifolds is

optimal, while for n 6≡ 1 mod 4, the best that one might hope for is that all orientable

n-manifolds can be immersed in R2n−α(n)−1.

The situation for Spin manifolds is similar, but more complicated, and is not com-

pletely resolved. The reduction of the problem to algebraic topology for both ori-

entable and Spin manifolds is given in the following result, whose proof appears at

the end of this section. Here χ is the canonical antiautomorphism of the mod 2 Steen-

rod algebra, ιk is the fundamental class in the mod-2 cohomology of the Eilenberg

MacLane space K(Z2, k), and ko∗(−) is connective KO homology, localized at 2.

Theorem 1.2.

a. Let ρ : H∗(X;Z) → H∗(X;Z2) be induced by reduction mod

2. There exists an orientable n-dimensional manifold with a

nonimmersion in R2n−k−1 implied by Stiefel-Whitney classes

if and only if there exists an element α ∈ Hn(K(Z2, k);Z)

such that 〈χ Sqn−k ιk, ρ(α)〉 6= 0. Moreover, it is necessary that

χ Sqn−k ιk 6∈ im(Sq1).

b. Let h : ko∗(X) → H∗(X;Z2) denote the Hurewicz homomor-

phism. There exists an n-dimensional Spin manifold with a

nonimmersion in R2n−k−1 implied by Stiefel-Whitney classes if

and only if there exists an element α ∈ kon(K(Z2, k)) such that

〈χ Sqn−k ιk, h∗α〉 6= 0. Moreover, it is necessary that χ Sqn−k ιk 6∈
im(Sq1, Sq2).

In Section 2, we prove the following theorem, which resolves completely the neces-

sary conditions of Theorem 1.2.
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Theorem 1.3.
i. The smallest k such that χ Sqn−k ιk 6∈ im(Sq1) ⊂ Hn(K(Z2, k);Z2) is{

(a) α(m) + b n = 4m+ b, 1 ≤ b ≤ 3

(b) α(n) + 1 n ≡ 0 (mod 4).

ii. The smallest k such that χ Sqn−k ιk 6∈ im(Sq1, Sq2) ⊂ Hn(K(Z2, k);Z2) is
(c) α(m) + b n = 8m+ b, 1 ≤ b ≤ 7

(d) α(n) + 1 n ≡ 2e (mod 2e+2), e ≥ 3

(e) α(n) + 2 n ≡ 3 · 2e (mod 2e+2), e ≥ 3.

Immediate corollaries of Theorems 1.2 and 1.3 are the “only if” part of Theorem

1.1 and the following result. One easily checks the equivalence of the “α(m) + b” and

“α(n) + ε′” versions.

Corollary 1.4. Define ε′n by

ε′n =



0 n ≡ 1 (8)

1 n ≡ 2, 3 (8)

3 n ≡ 4, 5 (8)

4 n ≡ 6, 7 (8)

1 n ≡ 2e (mod 2e+2), e ≥ 3

2 n ≡ 3 · 2e (mod 2e+2), e ≥ 3.

If there exists an n-dimensional Spin manifold for which a nonimmersion in R2n−k−1

is detected by Stiefel-Whitney classes, then k ≥ α(n) + ε′n.

It can be verified that Corollary 1.4 is equivalent to the less tractable result [13,

Proposition 1.1]. However, part (ii) of Theorem 1.3, which is needed in the proof of

Theorem 1.5, is new.

The thing that makes the orientable case easier than the Spin case is that, as we

show in Section 3, for the minimal value of k in case (i) of Theorem 1.3, a mod-

2 homology class dual to χ Sqn−k ιk is always in the image from Hn(K(Z2, k);Z),

thus implying the “if” part of Theorem 1.1. In the Spin case, if n is not one of the

integers included in Theorem 1.5, we have not yet been able to determine whether,

for the minimal value of k in case (ii) of Theorem 1.3, a mod-2 homology class dual to

χ Sqn−k ιk is in the image from kon(K(Z2, k)). Moreover, for n ∈ {9, 10, 11, 12, 17, 33},
we find that there is not a mod-2 homology class dual to χ Sqn−k ιk for the minimal
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possible value of k in the image from kon(K(Z2, k)), but if we increase k by 1, the

appropriate class is in this image. As we will discuss in Section 3, many of these

results were obtained, from a somewhat different perspective, by the second author

in [15]. Our result is as follows.

Theorem 1.5. The largest value of c for which there is an n-dimensional Spin man-

ifold with wc 6= 0 is given in Table 1.

Table 1. Nonzero dual Stiefel-Whitney classes

n 8–12 13–15 16–17 18–23 32–33
c 6 7 14 15 30

All dual Stiefel-Whitney classes are 0 in Spin manifolds of dimension less than 8.

Thus, for the values of c in Theorem 1.5, there exists an n-dimensional Spin mani-

fold which does not immerse in Rn+c−1, but Stiefel-Whitney classes allow the possi-

bility that all immerse in Rn+c. For values of n not included in Theorem 1.5, we do

not yet know the largest possible value of c.

We close this introductory section with this delayed proof.

Proof of Theorem 1.2. We prove (b); the proof of (a) is similar, using [8]. We first

prove the necessary condition.

Assume a nonimmersion of an n-manifold M in R2n−k−1 is detected by wn−k 6= 0.

Then, by Poincaré duality, there must exist a class x ∈ Hk(M ;Z2) such that wn−kx

is the nonzero element of Hn(M ;Z2). For a Spin manifold, the nonzero element

of Hn(M ;Z2) is not in im(Sq1, Sq2). It is well-known (e.g., [10]) that wn−kx =

χ Sqn−k(x). Consideration of the map f : X → K(Z2, k) for which f ∗(ιk) = x shows

that χ Sqn−k(ιk) is not in im(Sq1, Sq2).

The group MSpinn(X) = πn(MSpin ∧ X) consists of cobordism classes of pairs

(M, f) where M is an n-dimensional Spin manifold and f : M → X is a map. The

Hurewicz homomorphismMSpinn(X)→ Hn(X;Z2) satisfies h∗([M, f ]) = f∗(ρ([M ])),

where [M ] ∈ Hn(M ;Z) is the orientation class. By [1], localized at 2, there is an equiv-

alence MSpin→ bo∨W ′, where W ′ is a 7-connected spectrum. Let HZ2 denote the

mod-2 Eilenberg MacLane spectrum. The morphism [MSpin,HZ2] → [bo,HZ2] is

an isomorphism, since [W ′, HZ2] = 0.
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There exists a nonimmersion of an n-dimensional Spin-manifold in R2n−k−1 detected

by Stiefel-Whitney classes iff there is an n-dimensional Spin manifold M and an

element x ∈ Hk(M ;Z2) such that 〈χ Sqn−k x, ρ[M ]〉 6= 0 iff there is an n-dimensional

Spin manifold M and a map f : M → K(Z2, k) such that 〈χ Sqn−k ιk, f∗(ρ[M ])〉 6= 0

iff ∃α ∈ MSpinn(K(Z2, k)) such that 〈χ Sqn−k ιk, h∗α〉 6= 0 iff ∃α ∈ kon(K(Z2, k))

such that 〈χ Sqn−k ιk, h∗α〉 6= 0.

2. Proof of Theorem 1.3

We use Milnor basis and the following facts, where Sq(R) = Sq(r1, . . . , rs). ([9],

[11]) We assume that the reader is familiar with the complicated multiplication rule

for Milnor basis elements.

Proposition 2.1.

i. | Sq(R)| =
∑

(2j − 1)aj and exc(R) =
∑
aj.

ii. χ Sqd is the sum of all Sq(R) with | Sq(R)| = d.

iii. Sq(R) 6∈ im(Sq1, Sq2) iff r1 ≡ 0 mod 4 and r2 ≡ 0 mod 2.

iv. H∗(K(Z2, k);Z2) is a polynomial algebra generated by all Sq(R)ιk

for which exc(R) < k.

v. Sq(R)ιk = 0 if exc(R) > k.

vi. If R = (r1, . . .), exc(R) = k, and ri = 0 for i < t, then

Sq(R)ιk = (Sq(S)ιk)
2t, where S = (rt+1, . . .).

Proof of parts (a) and (c) of Theorem 1.3. We prove part (c). The proof of part (a)

is completely analogous.

Write 8m =
∑

j≥1 εj2
j with εj ∈ {0, 1}. Then Sq(E) = Sq(ε1, . . . , εr) has | Sq(E)| =

8m − α(m), exc(E) = α(m), and is not in im(Sq1, Sq2), since ε1 = ε2 = 0. With

k = α(m) + b, hence n− k = 8m−α(m), χ Sqn−k ιk contains the term Sq(E)ιk. This

is part of the basis, since exc(E) < k, can’t be cancelled by other terms in χ Sqn−k ιk,

and is not in im(Sq1, Sq2).

Now suppose Sq(R) = Sq(r1, . . . , rs) has | Sq(R)| = n − ` with ` ≤ α(m) + b,

exc(R) ≤ `, and r1 ≡ 0 mod 4 and r2 ≡ 0 mod 2. Then
∑

2jrj = | Sq(R)|+exc(R) ≤
n = 8m+ b implies ∑

2jrj ≤
∑

2jεj = 8m (2.2)
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since
∑

2jrj is a multiple of 8. Let bj = rj − εj ≥ −1, and r1 = 4c1 and r2 = 2c2.

Then (2.2) implies

8c1 + 8c2 +
∑
j≥3

2jbj ≤ 0, (2.3)

while ` ≤ α(m) + b implies 8m− α(m) ≤ | Sq(R)| hence

0 ≤ 4c1 + 6c2 +
∑
j≥3

(2j − 1)bj. (2.4)

We claim that the only solution of (2.3) and (2.4) with cj ≥ 0 and bj ≥ −1 is the

zero solution, which implies our result, namely that the only solution in part (b) with

k ≤ α(m) + b is the one described at the beginning of the proof. First note that

if there is a solution with c1 or c2 nonzero, they can be incorporated into b3, so we

may omit c1 and c2. Let S = {j : bj = −1}. We wish to show that for a multiset

of t’s (distinct from S but not necessarily from one another), the only way to have∑
2t ≤

∑
S 2j and

∑
S(2j − 1) ≤

∑
(2t − 1) is the empty sums. For example, having

bj = 2 contributes two 2t’s with t = j.

Combining two equal t-terms makes the second inequality harder to satisfy. We

perform this combining, and cancel whenever equal exponents occur on both sides.

Thus we may assume all exponents are distinct. The largest exponent, j, must occur

in S, and there is no way that distinct (2t − 1)’s less than that can be as large as

2j − 1.

Proof of part (b). Let n = 4m =
∑

j≥1 2jεj with εj ∈ {0, 1} and e ≥ 2 the smallest

subscript j for which εj = 1. Note that α(m) = α(n).

Suppose R = (r1, . . . , rs) has | Sq(R)| = 4m − ` with ` ≤ α(m), exc(R) ≤ `,

and r1 ≡ 0 mod 2 (so Sq(R) 6∈ im(Sq1)). Similarly to the proof of part (b), the

only possibility is rj = εj for all j. [[
∑

2jrj = | Sq(R)| + exc(R) ≤ 4m =
∑

2jεj.

With bj = rj − εj ≥ −1 and r1 = 2c1, we get 4c1 +
∑

j≥2 2jbj ≤ 0 and, from

4m − α(m) ≤ | Sq(R)|, 0 ≤ 2c1 +
∑

j≥2(2
j − 1)bj. As before, this has only the zero

solution.]]
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However,

Sq(ε1, . . . , εr)ια(m) = (Sq(εe, . . . , εr)ια(m))
2e−1

(2.5)

= Sq1(Sq(0, εe+1, . . . , εr)ια(m) · (Sq(εe, . . . , εr)ια(m))
2e−1−1)

since εe = 1. Thus χ Sqn−k ιk ∈ im(Sq1) for k ≤ α(m).

Now we consider k = α(m) + 1. Let te−1 = 2, te = 0, else tj = εj, and let E ′ be the

sequence (te, te+1, . . .). Note that exc(E ′) = α(m)− 1. Then

Sq(t1, . . . , ts)ια(m)+1 = (Sq(E ′)ια(m)+1)
2e−1

.

We claim that (Sq(E ′)ια(m)+1)
2e−1

cannot occur as a summand in Sq1(M) for any

monomial M in classes Sq(R)ια(m)+1 with exc(R) ≤ α(m). This implies that for

k = α(m) + 1, χ Sqn−k ιk 6∈ im(Sq1) because it contains the term Sq(t1, . . .)ιk.

To prove the claim, first note that since E ′ starts with 0, (Sq(E ′)ιk)
2e−1

cannot be

obtained in im(Sq1) as in (2.5). The other feature that keeps it out of im(Sq1) is

that k − exc(E ′) = 2. This implies that to have Sq(a1, . . . , ar)ιk = (Sq(E ′)ιk)
2p from

2.1(vi), it must be that (a1, . . . , ar) = (0p−1, 2, E ′). This would give

(Sq(E ′)ιk)
2e−1

= (Sq(E ′)ιk)
2e−1−2p Sq(0p−1, 2, E ′),

but this is not in im(Sq1) since Sq(0p−1, 2, E ′) 6∈ im(Sq1).

The following elementary lemma will be useful.

Lemma 2.6. Let n =
∑
εi2

i with εi ∈ {0, 1}.
a. Suppose n ≡ 0 (4) and

∑
ri(2

i− 1) = n−α(n)− 1 with ri ≥ 0.

Then
∑
ri ≥ α(n) + 1 with equality if and only if (r1, . . .) is

obtained from (ε1, . . .) by adding some (0, . . . , 0, 2,−1, 0, . . .).

b. Suppose n ≡ 0 (8) and∑
ri(2

i − 1) = n− α(n)− 2 (2.7)

with ri ≥ 0. Then
∑
ri ≥ α(n) + 2 with equality if and only if

(r1, . . .) is obtained from (ε1, . . .) by two steps of adding some

(0, . . . , 0, 2,−1, 0, . . .).
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Proof. We prove (b), as (a) is similar. Let n = 8m+8. If
∑
ri = α(n)+1, then, adding

this to (2.7), 8m+7 has been obtained as the sum of α(n)+1 not-necessarily-distinct

2-powers. Three of those must be used for the 7, so 8m is the sum of (α(n) − 2)

2-powers. But α(8m) ≥ α(n)− 1, contradiction. A similar contradiction is obtained

if
∑
ri = α(n). If

∑
ri = α(n) + 2, then n is obtained as the sum of α(n) + 2

not-necessarily-distinct 2-powers. The only way this can be done is by twice splitting

some 2i into 2i−1 + 2i−1.

Proof of part (d). Note that for k = α(n), χ Sqn−k ιk ∈ im(Sq1) ⊂ im(Sq1, Sq2) by

part (c).

Now let k = α(n) + 1. Write n = 2e + 2e+1m with m even and m =
∑

i≥0 δi2
i

with δi ∈ {0, 1}. Let v = (δ0, δ1, . . .). Note that δ0 = 0. We first show that,

mod im(Sq1, Sq2), χ Sqn−k ιk ≡ (Sq(0, v)ιk)
2e−1

. To see this, whenever δi = 1, let

vi = v + (0i−1, 2,−1, 0, . . .). Then, by Lemma 2.6(a)

χ Sqn−k = Sq(0e−2, 2, 0, v) +
∑
δi=1

Sq(0e−1, 1, vi) + terms of excess > k.

Thus

χ Sqn−k ιk = Sq(0e−2, 2, 0, v)ιk +
∑
δi=1

Sq(0e−1, 1, vi)ιk

= (Sq(0, v)ιk)
2e−1

+
∑
δi=1

(Sq(1, vi)ιk)
2e−1

.

But

(Sq(1, vi)ιk)
2e−1

= Sq1(Sq(0, vi)ιk ·(Sq(1, vi)ιk)
2e−1−1) ∈ im(Sq1), (2.8)

proving that χ Sqn−k ιk ≡ (Sq(0, v)ιk)
2e−1

.

We will complete the proof of part (d) by constructing a homomorphism φ :

Hn(K(Z2, k);Z2) → Z2 such that φ(im(Sq1, Sq2)) = 0 and φ((Sq(0, v)ι)2
e−1

) = 1.
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Here and below, we write ι for ιk. Let

A1 = (Sq(0, v)ι)2
e−1

A2 = (Sq(0, v)ι)2
e−1−4(Sq(1, v)ι)2 Sq(0, 0, v)ι

A3 = (Sq(0, v)ι)2
e−1−3 Sq(1, v)ι · Sq(1, 0, v)ι

A4 = (Sq(0, v)ι)2
e−1−4 Sq(1, 0, v)ι · Sq(0, 1, v)ι

A5 = (Sq(0, v)ι)2
e−1−7(Sq(1, v)ι)3 Sq(0, 0, v)ι · Sq(1, 0, v)ι

A6 = (Sq(0, v)ι)2
e−1−8(Sq(1, v)ι)2 Sq(0, 0, v)ι · Sq(1, 0, v)ι · Sq(0, 1, v)ι.

Here A5 = 0 = A6 if e = 3. Then φ is defined to be the homomorphism which

sends the monomials Ai to 1, and all other monomials in the generators Sq(R)ι with

exc(R) ≤ α(m) + 1 to 0.

One can verify that the only way that any of the Ai can occur as a summand of

Sq1(M) or Sq2(M) for a monomial M of the appropriate degree is as follows, where ≡
is mod the span of all monomials except the Ai. Since the number of Ai’s in each of

these elements of im(Sq1, Sq2) is even, the claim that φ(im(Sq1, Sq2)) = 0 is proved.

Sq2
(
(Sq(0, v)ι)2

e−1−2 Sq(0, 0, v)ι
)
≡ A1 + A2

Sq1
(
(Sq(0, v)ι)2

e−1−3 Sq(1, v)ι · Sq(0, 0, v)ι
)
≡ A2 + A3

Sq1
(
(Sq(0, v)ι)2

e−1−4 Sq(0, 0, v)ι · Sq(0, 1, v)ι
)
≡ A2 + A4

Sq2
(
(Sq(0, v)ι)2

e−1−5 Sq(1, v)ι · Sq(0, 0, v)ι · Sq(1, 0, v)ι
)
≡ A3 + A5

Sq2
(
(Sq(0, v)ι)2

e−1−6 Sq(0, 0, v)ι · Sq(1, 0, v)ι · Sq(0, 1, v)ι
)
≡ A4 + A6

Sq1
(
(Sq(0, v)ι)2

e−1−7 Sq(1, v)ι · Sq(0, 0, v)ι · Sq(1, 0, v)ι · Sq(0, 1, v)ι
)
≡ A5 + A6.

The last three are not present when e = 3.

As an aid for the reader doing this verifying, we note the following relations, using

Proposition 2.1(vi) in the first three.

Sq2(Sq(0, 0, v)ι) = (Sq(0, v)ι)2

Sq1(Sq(0, 1, v)ι) = (Sq(1, v)ι)2

Sq2(Sq(0, v)ι) = (Sq(v)ι)2

Sq2(Sq(1, 0, v)ι) = Sq(0, 1, v)ι.
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Trickier than computing the Sq1 and Sq2 is determining that theAi cannot be achieved

in any other way. For example, you might think that (Sq(0, v)ι)2 as part of the first

factor of A2 might be obtained from Sq2(Sq(0, 0, v)ι), but it doesn’t occur because it

would be coming from (Sq(0, 0, v)ι)2 and so would get a coefficient 2.

Proof of part (e). Let n = 3 · 2e + 2e+2m with m =
∑

i≥0 δi2
i and v = (δ0, δ1, . . .). We

will first show that χ Sqn−k ιk ∈ im(Sq1, Sq2) when k = α(m) + 3. Whenever δi = 1

with i ≥ 1, let vi = v + (0i−2, 2,−1, 0, . . .). By Lemma 2.6(a), the only summands of

χ Sqn−k of excess ≤ α(m) + 3 are Sq(0e−2, 2, 0, 1, v), Sq(0e−1, 3, 0, v), Sq(0e−1, 1, 1, vi),

and if δ0 = 1, Sq(0e−1, 1, 3, 0, δ1, δ2, . . .). Then, with ι = ιk,

χ Sqn−k ι = (Sq(0, 1, v)ι)2
e−1

+(Sq(0, v)ι)2
e

+
∑
δi=1

(Sq(1, vi)ι)
2e+ε(Sq(3, 0, δ1, . . .)ι)

2e .

Mod im(Sq1), this equals Y 2e−1
, where Y = Sq(0, 1, v)ι+ (Sq(0, v)ι)2, since the terms

after the first two are in im(Sq1), similarly to (2.8). This Y is a generalization of

Sq2 Sq1, and satisfies Sq2 Y = 0, Sq1(Y ) = Sq(1, 1, v)ι, and Sq2(Sq(1, 0, v)ι) = Y . Let

B1 = Y 2e−1−3 Sq(1, 0, v)ι(Sq(1, 1, v)ι)2

B2 = Y 2e−1−4 Sq(0, 0, v)ι(Sq(1, 1, v)ι)3

B3 = Y 2e−1−4(Sq(2, 0, v)ι)2(Sq(1, 1, v)ι)2

B4 = Y 2e−1−4(Sq(0, v)ι)2 Sq(1, 0, v)ι(Sq(1, 1, v)ι)2.

One can verify the following equations. Summing them yields the desired conclusion,

Y 2e−1 ∈ im(Sq1, Sq2).

Sq2
(
Y 2e−1−1 Sq(1, 0, v)ι

)
= Y 2e−1

+B1

Sq1
(
Y 2e−1−3 Sq(0, 0, v)ι(Sq(1, 1, v)ι)2

)
= B1 +B2

Sq2
(
Y 2e−1−4 Sq(0, 0, v)ι · Sq(2, 0, v)ι(Sq(1, 1, v)ι)2

)
= B2 +B3 +B4

Sq1
(
Y 2e−1−3(Sq(2, 0, v)ι)2 Sq(1, 1, v)ι

)
= B3

Sq1
(
Y 2e−1−4(Sq(0, v)ι)2 Sq(0, 0, v)ι(Sq(1, 1, v)ι)2

)
= B4.

Again let n = 3 · 2e + 2e+2m with m =
∑

i≥0 δi2
i and v = (δ0, δ1, . . .). We will now

show that χ Sqn−k ιk 6∈ (Sq1, Sq2) when k = α(m) + 4 = α(n) + 2. By Lemma 2.6(b),

χ Sqn−k has many summands of excess k (and none with smaller excess). Letting v′
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denote v with the addition of one (. . . , 0, 2,−1, 0, . . .), v′′ obtained from v by two such

additions, and v0 being v with δ0 = 1 changed to δ0 = 0, we list these now.

Sq(0e−2, 2, 2, 0, v)ιk = (Sq(2, 0, v)ιk)
2e−1

Sq(0e−3, 2, 1, 0, 1, v)ιk = (Sq(1, 0, 1, v)ιk)
2e−2

Sq(0e−2, 2, 0, 1, v′)ιk = (Sq(0, 1, v′)ιk)
2e−1

Sq(0e−1, 3, 0, v′)ιk = (Sq(0, v′)ιk)
2e

Sq(0e−1, 1, 1, v′′)ιk = (Sq(1, v′′)ιk)
2e

Sq(0e−2, 2, 0, 3, v0)ιk = (Sq(0, 3, v0)ιk)
2e−1

Sq(0e−1, 3, 2, v0)ιk = (Sq(2, v0)ιk)
2e .

Similarly to the proof of part (d), we will construct a homomorphism φ from

Hn(K(Z2, k);Z2) to Z2 sending (Sq(2, 0, v)ιk)
2e−1

and nine other specified monomials

to 1, and all others to 0, and annihilating (im(Sq1, Sq2)). The above monomials other

than the first are sent to 0, so we need not worry about them.

We will take some notational shortcuts, writing (r1, r2)
p for Sq(r1, r2, 0, v)ιk)

p, and

similarly with r2 omitted. The ten monomials Ci that are mapped to 1 by φ are listed

below.

C1 = (2)2
e−1

C2 = (2)2
e−1−4(3)2(0, 2)

C3 = (2)2
e−1−4(1, 2)(0, 3)

C4 = (2)2
e−1−3(3)(1, 2)

C5 = (0)(2)2
e−1−4(3)(0, 3)

C6 = (0)(2)2
e−1−3(3)2

C7 = (2)2
e−1−8(3)2(0, 2)(1, 2)(0, 3)

C8 = (2)2
e−1−7(3)3(0, 2)(1, 2)

C9 = (0)(2)2
e−1−8(3)3(0, 2)(0, 3)

C10 = (0)(2)2
e−1−7(3)2(1, 2)(0, 3).

Note that C7 through C10 are only present for e ≥ 4. The only relations involving

Sq1(M) or Sq2(M) involving any of the Ci are as follows, where again ≡ is mod
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monomials which are not one of our Ci.

Sq1
(
(2)2

e−1−4(0, 2)(0, 3)
)

= C2 + C3

Sq1
(
(2)2

e−1−3(3)(0, 2)
)

= C2 + C4

Sq1
(
(0)(2)2

e−1−3(0, 3)
)
≡ C5 + C6

Sq2
(
(2)2

e−1−2(0, 2)
)

= C1 + C2

Sq2
(
(0)(2)2

e−1−4(3)(1, 2)
)
≡ C4 + C5

Sq2
(
(0)(2)2

e−1−1) ≡ C1 + C6

Sq1
(
(2)2

e−1−7(3)(0, 2)(1, 2)(0, 3)
)
≡ C7 + C8

Sq1
(
(0)(2)2

e−1−7(3)2(0, 2)(0, 3)
)
≡ C9 + C10

Sq2
(
(2)2

e−1−6(0, 2)(1, 2)(0, 3)
)
≡ C3 + C7

Sq2
(
(2)2

e−1−5(3)(0, 2)(1, 2)
)
≡ C4 + C8

Sq2
(
(0)(2)2

e−1−8(3)3(0, 2)(1, 2)
)
≡ C8 + C9

Sq2
(
(0)(2)2

e−1−6(3)(0, 2)(0, 3)
)
≡ C5 + C9

Sq2
(
(0)(2)2

e−1−5(1, 2)(0, 3)
)
≡ C3 + C10

Sq2
(
(0)(2)2

e−1−5(3)2(0, 2)
)
≡ C2 + C6

Sq2
(
(0)(2)2

e−1−9(3)2(0, 2)(1, 2)(0, 3)
)
≡ C7 + C10.

Relations 7 though 14 are only relevant for e ≥ 4, and the last one for e ≥ 5.

Some relations useful in the analysis are, in our shorthand notation, Sq1(0, 3) = (3)2,

Sq2(0, 2) = (2)2, and Sq2(1, 2) = (0, 3).

Since the only elements of im(Sq1, Sq2) which involve any Ci involve an even number

of Ci, we conclude that φ(im(Sq1, Sq2)) = 0.

3. Existence of manifolds, I

We begin this section by presenting a proof of the “if” part of Theorem 1.1. By

Theorem 1.2(a), we must show that, for k as in part (i) of Theorem 1.3, a mod-2

homology class dual to χ Sqn−k ιk is the reduction of an integral class.

For n = 4m+ b with 1 ≤ b ≤ 3 and k = α(m) + b, similarly to the first part of the

proof of part (b) of Theorem 1.3, χ Sqn−k ιk contains the term Sq(0, ε2, . . . , εr), and
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so Sq1 χ Sqn−k ιk 6= 0. This implies that a dual mod-2 homology class is the reduction

of an integral class since the composite

Hn+1(X;Z2)
∂−→ Hn(X;Z)

ρ2−→ Hn(X;Z2)

is dual to Sq1.

If n = 2eu with u odd and e ≥ 2, and k = α(n) + 1, then, by the proof of part

(c), χ Sqn−k ιk = (Sq(E ′)ιk)
2e−1

where exc(E ′) = k − 2 and the first entry of E ′ is

0. Let x = Sq(E ′)ιk. In [2, Theorem 5.5] or [5, Theorem 1.3.2], it is shown that for

such a class x (even-dimensional primitive with Sq1 x 6= 0), de(x
2e−1

) 6= 0 for all e

in the cohomology Bockstein spectral sequence, and then, by [2, Theorem 4.7] or [5,

Theorem 2.4.4], this implies that an integral homology class dual to x2
e−1

has order

2e. This completes the proof of the “if” part of Theorem 1.1.

Next we prove Theorem 1.5 for n ≤ 15. Recall from Theorem 1.2 that we need

that χ Sqn−k ιk 6∈ im(Sq1, Sq2) and a dual class is in the image from kon(K(Z2, k)).

The n ≤ 7 result can be seen from the fact that elements Sq(R) not in im(Sq1, Sq2)

satisfy | Sq(R)|+ exc(R) ≥ 8, so if Sq(R)ιk 6∈ im(Sq1, Sq2), then n = | Sq(R)|+k ≥ 8.

For n = 8, the smallest possible value of k in Theorem 1.3(ii) is 2, while for

9 ≤ n ≤ 15, it is k = n − 7. Detailed Adams spectral sequence (ASS) calculations,

discussed below, show that in the ASS converging to ko∗(K(Z2, k)), χ Sq6 ι2 is a

permanent cycle, so yields the desired element in ko8(K(Z2, 2)), while for 9 ≤ n ≤ 12,

χ Sq7 ιk supports a nonzero d2-differential for 2 ≤ k ≤ 5, but not for 6 ≤ k ≤ 8. For

9 ≤ n ≤ 12, we next try χ Sq6 ιk with k = n− 6, and it is clear from Figure 3.2 that

there are no possible differentials on this class when k = 3 (n = 9) and hence also

not for larger values of k. Once we have verified these claims, Theorem 1.5 follows

for n ≤ 15.

The E2-term of the ASS converging to ko∗(K(Z2, k)) is ExtA1(H
∗(K(Z2, k);Z2),Z2),

where A1 is generated by Sq1 and Sq2. For 2 ≤ k ≤ 6 and ∗ ≤ k+ 8, these are shown

in Figures 3.1, 3.2, and 3.3. These were obtained by calculating minimal resolutions

of H∗(K(Z2, k);Z2) as A1-modules. See, e.g., [15, pp. 121–125]. The classes involved

in the key d2-differentials are circled.
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Figure 3.1. ko∗+2(K(Z2, 2)) → H∗+2(K(Z2, 2);Z)
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Figure 3.2. ko∗+3(K(Z2, 3)) → ko∗+4(K(Z2, 4))
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Figure 3.3. ko∗+5(K(Z2, 5)) → ko∗+6(K(Z2, 6))
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We establish the differential when k = 2, and use morphisms of minimal resolutions

to see that the circled classes map as indicated as k increases. For k = 2, we use

the morphism ko∗(K(Z2, 2))→ H∗(K(Z2, 2);Z). This is depicted in Figure 3.1. The

d2-differential in ASS(H∗(K(Z2, 2);Z)) is implied by results of [2] or [5] used earlier.

This implies d2(A) = B (not pictured) in ASS(ko∗(K(Z2, 2))). We show below that

the d2-differential from C to D is implied by the action of the ASS of bo∗ on that of

ko∗(K(Z2, 2)).

Let τ (resp. h0) denote the element of E2(bo) corresponding to the filtration-3

generator of π4(bo) (resp. 2). Then τ · A = h30C and τ · B = h30D. This can be seen
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from the minimal resolutions. Thus

h30d2(D) = d2(h
3
0D) = d2(τB) = τ · d2(B) = τ · A = h30C,

so d2(D) = C.

This determination of ko∗(K(Z2, 2)) was done, in a similar manner but a somewhat

different context, in [15]. Many of our deductions here for other ko∗(K(Z2, k)) were

also made there, using a different argument.

4. Existence of manifolds, II.

In this section, we prove Theorem 1.5 for n > 15. Let Kk = K(Z2, k) and

ExtB(X) = ExtB(H∗X,Z2). Here B = A1 or E1, the latter being the exterior algebra

on the Milnor primitives Q0 = Sq1 and Q1 = Sq(0, 1). The E2-term of the ASS

converging to ku∗(X) is ExtE1(X), and there is a nice morphism ko∗(X)→ ku∗(X).

Theorem 1.5 for n > 15 follows from Theorem 1.2(b), Theorem 1.3(ii), and the fol-

lowing result, the proof of which requires detailed ASS calculations.

Theorem 4.1.

i. For n = 16 and 32, the element of Ext0,nA1
(K2) dual to χ Sqn−2 ι2

is a permanent cycle in the ASS converging to ko∗(K2).

ii. For n = 17 (resp. 33), the element of Ext0,nE1
(K2) dual to χ Sqn−2 ι2

supports a nonzero d4 (resp. d8) differential in the ASS converg-

ing to ku∗(K2).

iii. The element of Ext0,18A1
(K3) dual to χ Sq15 ι3 is a permanent

cycle in the ASS converging to ko∗(K3).

Part (ii) implies the analogous result for ko∗ since the morphism ko∗X → ku∗X

is induced by a morphism of spectral sequences. That elements dual to χ Sq14 ι3,

χ Sq30 ι3, and χ Sq15 ιk for 4 ≤ k ≤ 8 are permanent cycles follows from parts (i) and

(iii) by naturality.

The remainder of the paper is devoted to proving Theorem 4.1. In [15, Section 5],

the second author computed ExtA1(K2) through dimension 36. An incorrect deduc-

tion was made regarding some differentials in this ASS around dimension 33, but we

have verified that its A1-module splitting and determination of associated Ext groups

is correct. Although not explicitly noted there, one can read off that Exts,tA1
(K2) = 0
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for s > 0, t− s ≡ 7 (mod 8), t− s < 39. This is all that is required for our Theorem

4.1[i.].

For part (ii), we give the complete calculation of the ASS for ku∗(K2) through

dimension 34, except for filtration-0 Z2’s corresponding to free E1 summands. In this

range, H∗(K2;Z2) is a polynomial algebra on classes u2 = ι2, u3 = Sq1 ι, u5 = Sq2,1 ι,

u9 = Sq4,2,1 ι, u17 = Sq8,4,2,1 ι, and u33 = Sq16,8,4,2,1 ι. The E1 action is given in Table

2.

Table 2. E1 action on generators of H∗(K2)

x u2 u3 u5 u9 u17 u33
Q0x u3 0 u23 u25 u29 u217
Q1x u5 u23 0 u43 u45 u49

With P (resp. E) denoting a polynomial (resp. exterior) algebra, in this range the

Q0-homology is P [u22]⊗ E[x5], where x5 = u5 + u2u3, and Q1-homology is

P [u22]⊗ E[x9, x17, u
2
9, u

2
17],

where x9 = u9 + u33 and x17 = u17 + u2u
3
5. There is an E1-submodule N with a single

nonzero element in gradings 5, 7, 8, 9, 10, with generators x5, x7 = u2u5, and x9, with

Q0x7 = Q1x5 and Q1x7 = Q0x9. It has a Q0-homology class x5, and a Q1-homology

class x9. The beginning of the E2-term for 〈u2i+2
2 〉 ⊕ u2i2 N is depicted in Figure 4.2.

Figure 4.2. ExtE1(〈u2i+2
2 〉 ⊕ u2i2 N)

4i+ 104 6 8

Comparison with the results for H∗(K2;Z) in [2] cited early in Section 3 shows

that there is a dν(4i+4)-differential between the first pair of towers in this chart, where

ν(−) denotes the exponent of 2 in an integer. This differential is promulgated in each

chart by the action of v1 ∈ E1,3
2 (bu). The v1-periodic classes remaining after removing
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classes involved in these differentials are, in the range being considered here, v1-towers

on u42, u
8
2, h0u

8
2, u

12
2 , u162 , h0u

16
2 , and h20u

16
2 . These will appear as lines of slope 1/2 in

Figure 4.3. Here h0 is the Ext element corresponding to multiplication by 2. We are

abusing notation here by writing a cohomology class to denote an Ext class dual to

it.

The submodules u2i+2
2 and u2i2 N account for all of the Q0-homology of H∗K2.

Through grading 35, the remaining Q1-homology classes are

P [u22]⊗ E[x9]⊗ 〈x17, u29, u217, u29x17〉.

Let x33 = u33 + u2u3u
2
5u

2
9. There are Q0-free E1-submodules M4 and M5 such that

M4 has a single nonzero class in gradings 17 and 18, and M5 in gradings 33, 34, 35,

and 36, realizing the Q1-homology classes x17, u
2
9, u

2
17, and u29x17, and beginning with

x17 and x33, respectively. Then the inclusion of the E1-submodule

P [u22]⊗ (〈1〉 ⊕N ⊕M4 ⊕ (N ⊗M4)⊕M5)

into H∗(K2) induces an isomorphism in Q0- and Q1-homology through dimension 42,

and hence an isomorphism in ExtE1 above filtration 0 through roughly the same range.

For any Q0-free E1-module M , M ⊗ N and x9M have isomorphic ExtE1 in positive

filtration. ExtE1(M4) is a single v1-tower beginning in grading 17, while ExtE1(M5)

has v1-towers beginning in 33 and 35, connected by h0.

The initial differential implied by integral homology was d2(x9) = v21u
2
2. The deriva-

tion property of differentials implies that d2(u
4i
2 x9x17) = v21u

4i+2
2 x17. Listing only v1-

periodic classes, the elements remaining after the above considerations are depicted

in Figure 4.3.
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Figure 4.3. v1-periodic classes in part of ASS for ku∗(K2)
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We claim that d4(x17) = v41u
4
2. To see this, let f : CP∞ → CP∞ denote the

H-space squaring map, and g : CP∞ → K2 correspond to the nonzero element of

H2(CP∞;Z2). The composite g ◦f is trivial, and so g∗ : ku∗(CP
∞)→ ku∗(K2) sends

all elements in im(ku∗(CP
∞)

f∗−→ ku∗(CP
∞)) to 0. Let βi ∈ ku2i(CP∞) be dual to

yi, where y generates ku2(CP∞). The [2]-series for ku is 2x + v1x
2, and it follows

from [14, Theorem 3.4] that f∗(βj) equals the coefficient of xj in
∑
i≥1

βi(v1x
2 + 2x)i.

Letting j = 8, we obtain that the following element maps to 0 in ku∗(K2):

v41β4 + 40v31β5 + 240v21β6 + 448v1β7 + 28β8.

All classes except the first map to 0 in ku∗(K2). Since g∗(β4) = u42, we deduce

that v41u
4
2 = 0 in ku∗(K2). The only way that this can occur is by the asserted

d4-differential. By the derivation property, d4(u
8
2x17) = v41u

12
2 .

Similarly to this, using CP∞, we obtain that v81u
8
2 = 0 in ku∗(K2). The only way

that this can happen is with d5(u
4
2x17) = h0v

4
1u

8
2 and d8(x33) = v81u

8
2. Since the Ext

class x33 evaluates nontrivially on χ Sq31 ι2, this completes the proof of part (ii) of

Theorem 4.1.

We will determine the ko-homology of K(Z2, 3) through grading 20, providing more

detail than we did in the smaller range of dimensions considered in Section 3. Through

dimension 24, H∗(K3;Z2) is a polynomial algebra on the generators listed in Table 3.
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Table 3. Generators of H∗(K3;Z2)

x Sq1 x Sq2 x Q1x
g3 ι3 g4 g5 g6 + g23
g4 Sq1 ι 0 g6 g7
g5 Sq2 ι g23 g7 g24
g6 Sq2,1 ι g7 0 0
g7 Sq3,1 ι 0 0 0
g9 Sq4,2 ι g25 0 g43
g10 Sq4,2,1 ι g11 g26 g13
g11 Sq5,2,1 ι 0 g13 g27
g13 Sq6,3,1 ι g27 0 0
g17 Sq8,4,2 ι g29 0 g45
g18 Sq8,4,2,1 ι g19 g210 g21
g19 Sq9,4,2,1 ι 0 g21 g211
g21 Sq10,5,2,1 ι g211 0 0

From this, one readily determines that through grading 20 the Q0-homology classes

are g26, g′13 = g13+g6g7, and g210, while Q1-homology classes are g23, g25, g′11 = g11+g4g7,

g23g
2
5, g23g

′
11, g

2
9, and g210. We also let g′10 = g10 + g4g6.

In Table 4, we list eight A1-submodules Mi whose direct sum carries exactly the

Q0- and Q1-homology of H∗(K3) through grading 20. Thus the inclusion of this sum

into H∗(K3) induces an isomorphism in Exts,tA1
for s > 0 in this range. We just list

the A1-generators of the modules. In Figures 4.4 and 4.5 we will depict ExtA1(Mi).

The subscript of Mi is the grading of the bottom class. The chart for the second

of each pair of summands appears in red. For i = 12 and 13, xi generates a free

A1-submodule but is necessary for inclusion since Sq2,1 xi+3 = Sq2,2,2 xi. Some of the

modules can be extended beyond grading 22 by adding higher generators. In Table

4, x19 = g24g5g6 + g3g4g
2
6 + g3g

4
4. We have included M21 because its Ext impacts that

of M18.
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Table 4. Submodules of H∗(K3)

i A1-generators of Mi H∗(−;Q0) H∗(−;Q1)
3 g3, g3g4 g26 g23
9 g9, g

2
3g5, g3g

3
4, x19 0 g25

10 g′10 g′13 g′11
12 g3g9, g

3
5, g53g4 0 g23g

2
5

13 g3g
′
10, g

2
3g
′
10, g3g4g

′
13 0 g23g

′
11

17 g17, g
2
5g9 0 g29

18 g18 g210 g210
21 g21 + g10g11, Sq12,6,3,1 ι+ g36g7 g21 + g10g11 0

Figure 4.4. Ext-chart for M3 ⊕M10 (left), and M18 ⊕M21
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The differentials follow as before from the fact ([2] or [5]) that H12(K3;Z) ≈ Z/4 ≈
H20(K3;Z).

Figure 4.5. Ext-charts for M9 ⊕M13 (left), and M12 ⊕M17
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The only possible differential on the class A in Ext0,18A1
(M18) would be to hit the

element B in Ext4,21A1
(M9). However, since h1A = 0 but h1B 6= 0 such a differential

cannot occur. Thus g18, which is the desired class χ Sq15 ι3, is a permanent cycle,

as claimed. We expect that d3 is nonzero from most of M13 to M9, but this is not

required for our conclusion.
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