EXPLICIT MOTION PLANNING RULES IN CERTAIN POLYGON
SPACES

DONALD M. DAVIS

ABSTRACT. This is an addendum to our paper [1]. It seems some-
what relevant, but perhaps distracting. We give an optimal, ex-
plicit set of motion planning rules in a polygon space closely related
to the polygon space studied in [1].

1. INTRODUCTION

In [1], we studied the algebraic and differential topology of the space
Kn=(SY"/ (21, 2n-1,2n) ~ (Z1, -, Zn1, —2n)- (1.1)
We are particularly interested in determining its topological complexity, because it is
homeomorphic to the space M(e"~',1,1,1,2) of isometry classes of planar polygons
with the prescribed side lengths. Here 0 < € < ﬁ occurs n — 1 times. All we can
say is that n < TC(K,) < 2n — 5. Here we consider motion planning in a closely
related space of polygons.

Let M(e" ' 1,1,1,2) denote the space of planar polygons with the prescribed side
lengths, identified under oriented isometry. Then the double cover M ("1, 1,1,1,2) —
M(e"=1,1,1,1,2) which identifies a polygon with its reflection across the long edge
corresponds to the double cover T" — K,,. The n-torus is well known to satisfy
TC(T™) = n + 1, with easily-described motion planning rules. Using [2], we give
here n + 1 explicit motion planning rules between polygons in M (e"3,1,1,1,2) cor-
responding to the simple motion planning rules for the torus.
~ Date: June 26, 2017.

Key words and phrases. topological complexity, planar polygon spaces.
2000 Mathematics Subject Classification: 55M30, 70B15.



2 DONALD M. DAVIS
2. DESCRIPTION OF POLYGONS

Let £ = (e»',1,1,1,2). A polygon in M(£) or M({) with successive vertices
Xi, ..., Xny3 can be placed so that X; = (0,0) and X153 = (2,0). Edges X;X;1,
1 <i <n-—1, can be chosen as arbitrary vectors of length €. These correspond to the
first n — 1 factors of T™. The distance from X,, to X, 13 is a real number r satisfying
1 < r < 3. Following [2], we choose X,,;1 and X, ;2 as follows.

Identify S! as S := [~1,1] x {—1,1}/(£1,—1) ~ (£1,1). Let C(x,r) denote the
circle of radius r centered at x. Vertex X, lies on the arc of C'(X,,,1) which lies
inside C'(X,,13,2). Parametrize this arc linearly from bottom (P-) to top (Py) as t
goes from —1 to 1. For [(¢1,t2)] € S, X,,41 is the point on the arc with parameter value
t. If t; # £1, C(X,41, 1) intersects C'(X,43,1) at two points, one lying above the
segment X, 11X, 13 and the other below it. Let X, 5 be the point above (resp. below)
the segment if ¢t = 1 (resp. —1). We also say that X, 1-X,,10-X,13 is an “up”
(resp. “down”) linkage. If t; = 41, then C(X,41,1) and C(X,,,3,1) intersect at one
point, which is chosen for X, ,».

Note that conjugating the first n — 1 S'-factors, while negating the last one, corre-
sponds to reflecting the polygon about its long side. The following figure illustrates
the polygon associated to (21, zp, z3) € T° with 2z, = €™/, 25 = ¥™/4 23 = [(.6,1)],
with € ~ 0.3.

3. MOTION PLANNING RULES

Recall that the n + 1 motion planning rules for 7™ are that in each factor move

along the shorter arc if the points are not antipodal and counterclockwise if they are.
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The domains of continuity are sets having a fixed number of antipodal components.
These motions can be done either simultaneously in all components, or sequentially.

We wish to tell how to move from a polygon with vertices (X1, ..., X,13) to polygon
(X1,X5,..., X, 9, Xnss). For both of them, X; = (0,0) and X, 13 = (2,0). The
polygons are associated to points (21,...,2n-1, [t1,t2]) and (21,..., 2,4, [t],15]) in
T" 1 x S as described in the previous section. We will do the motion for the first
n — 1 components first, as they are simpler.

We rotate the edges X;X;1; for 1 < ¢ < n — 1 according to the rule for the
torus (the shorter way if z] # —z;, else counterclockwise). This can be done either

simultaneously or sequentially. During this motion, the vertex X, will be moving
to X/

n’

causing the arc from P_ to P, to change smoothly. While this takes place,
we maintain the parameter values [t1,ts] from the initial polygon; as the arc moves,
X411 stays the same fraction of the way along it, and the linkage X,,11-X,19-X,43
stays either “up” or “down” (or straight if ¢, = +1). Following this motion, we
will be at (X1, X5, ..., X, X/ 1, X)) o, Xpts), where (X, X)), X" 5, X;,13) has the
initial parameter values [t;, 5], and we wish to move it to (X, X}, X, 5, Xy 43) with
parameter values [t], 5], without moving X/. There are two cases, corresponding to
antipodal or not on the circle.

Case 1: Suppose that X, , and X _, are not the reflections of X/, and X,
across the segment X! X, 3. If both are “up” linkages or both are “down” linkages
(or one is straight), then, maintaining the sign of the linkage, move from X, to
X 1. This will automatically move X, , to X| ,. If the linkages have opposite sign

(i.e., t # t9), then without loss of generality assume that
d( Xy, Pi) +d(Py, X5 ) < d(Xpp, Po) +d(P-, X7 ). (3.1)

(These will not be equal by the “not reflections” assumption.) Then move from X,
to Py using its linkage sign (i.e., ¢2), and then from P, to X, using linkage sign t5.
If the opposite inequality occurs in (3.1), move similarly through P_.

Case 2: Suppose that X, and X _, are the reflections of X/, and X, across

the segment X X, 13. If X -X]" o-X, 15 is an “up” linkage (i.e., t = 1), move

n

X/, down to P_, maintaining the “up” orientation, and then switch to a “down”

orientation as you move up from P_to X, ;. If X' -X ,-X, 5 isa “down” linkage,

move X/, up to P;, maintaining the “down” orientation, and then switch to an “up”
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orientation as you move down from P, to X _ ;. The key point for continuity here is
that if you were moving from P, to P_, you get the same path regardless of whether
you think of the initial orientation as being up or down. It will move through “up”
linkages. Similarly, motion from P_ to P, will be through “down” linkages either

way you think about it.
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