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This paper is dedicated to Michael Barratt on the occasion of his 80th birthday.

Abstract. We prove that RP 2e−1 can be immersed in R2e+1−e−8

provided e ≥ 7. If e ≥ 14, this is 2 better than previously known
immersions. Our method is primarily an induction on geometric
dimension, incorporating also sections obtained from the Radon-
Hurwitz theorem.

1. Statement of result and background

Our main result is the following immersion theorem for real projective spaces.

Theorem 1.1. If e ≥ 7, then RP 2e−1 can be immersed in R2e+1−e−8.

This improves, in these cases, by 2 dimensions upon the result of Milgram ([9]),

who proved, by constructing bilinear maps, that if n ≡ 7 mod 8, then RP n can be

immersed in R2n−α(n)−4, where α(n) denotes the number of 1’s in the binary expansion

of n. In [2, 1.2], the first and third authors used obstruction theory to prove that

if n ≡ 7 mod 8, then RP n can be immersed in R2n−D, where D = 14, 16, 17, 18 if

α(n) = 7, 8, 9,≥ 10. That result, with n = 2e − 1, is 1 or 2 dimensions stronger

than ours for 7 ≤ e ≤ 11. If e ≥ 13, then our result improves on the result of [2] by

e− 12 dimensions. Thus Theorem 1.1 improves on all known results by 2 dimensions

if e ≥ 14.

In [6], James proved that RP 2e−1 cannot be immersed in R2e+1−2e−δ where δ =

3, 2, 2, 4 for e ≡ 0, 1, 2, 3 mod 4. In [5], an immersion result for RP 2e−1 was announced

in dimension 1 greater than that of James’ nonimmersion, which would have been

optimal. However, a mistake in the argument of [5] was pointed out by Crabb and

Steer. We hope that a slight improvement in our argument might enable us to prove an
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immersion result in dimension 1 greater than that of James’ nonimmersion (possibly

2 greater if e ≡ 3 mod 4). We will point out in Remark 2.11 what would be required

for this improvement.

2. Outline of proof

In this section we outline the proof of Theorem 1.1. In subsequent sections, we will

fill in details.

If θ is a vector bundle over a compact connected space X, we define the geometric

dimension of θ, denoted gd(θ), to be the fiber dimension of θ minus the maximum

number of linearly independent sections of θ. Equivalently, if dim(θ) = n, then gd(θ)

equals the smallest integer k such that the map X
θ−→BO(n) which classifies θ factors

through BO(k). The following lemma is standard (See e.g. [10, 4.2]). Here and

throughout, ξn denotes the Hopf line bundle over RP n.

Lemma 2.1. Let φ(n) denote the number of positive integers i satisfying i ≤ n and

i ≡ 0, 1, 2, 4 mod 8. Suppose n > 8. Then RP n can be immersed in Rn+k if and only

if gd((2φ(n) − n− 1)ξn) ≤ k.

Thus Theorem 1.1 will follow from the following result, to the proof of which the

remainder of this paper will be devoted.

Theorem 2.2. If e ≥ 7, then gd((22e−1−1 − 2e)ξ2e−1) ≤ 2e − e− 7.

The bulk of the work toward proving Theorem 2.2 will be a determination of upper

bounds for gd(2eξn) for all n ≡ 7 mod 8 by induction on e. A similar method could be

employed for all n, but we restrict to n ≡ 7 mod 8 to simplify the already formidable

arithmetic. We let Ak = RP 8k+7, and denote gd(mξ8k+7) by gd(m, k).

The classifying map for 2eξ8k+7 will be viewed as the following composite.

Ak
d−→ (Ak × Ak)

(8k+7) ↪→ ⋃

j

Aj × Ak−j
f×f−−→ BO2e−1 ×BO2e−1 → BO2e

(2.3)

Here d is a cellular map homotopic to the diagonal map, X(n) denotes the n-skeleton of

X, and f classifies 2e−1ξ. We write BOm for BO(m) for later notational convenience.

As a first step, we would like to use (2.3) to deduce that

gd(2e, k) ≤ max{gd(2e−1, j) + gd(2e−1, k − j) : 0 ≤ j ≤ k}.
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In order to make this deduction, we need to know that the liftings of the various

2e−1ξ8j+7 to various BOm have been made compatibly.

Definition 2.4. If θ is a vector bundle over a filtered space X0 ⊂ · · · ⊂ Xk, we say

that

gd(θ|Xi) ≤ di compatibly for i ≤ k

if there is a commutative diagram

X0 −−−→ X1 −−−→ · · · −−−→ Xky
y

y
BOd0 −−−→ BOd1 −−−→ · · · −−−→ BOdk

−−−→ BOdim(θ)

where the map Xk → BOdim(θ) classifies θ, and the horizontal maps are the usual

inclusions.

If X0 ⊂ · · · ⊂ Xk and Y0 ⊂ · · · ⊂ Yk are filtered spaces, we define, for 0 ≤ i ≤ k,

(X × Y )i :=
i⋃

j=0

Xj × Yi−j.

Then (X × Y )0 ⊂ · · · ⊂ (X × Y )k is clearly a filtered space. We will prove the

following general result in Section 3.

Proposition 2.5. Suppose gd(θ|Xi) ≤ di compatibly for i ≤ k and gd(η|Yi) ≤ d′i
compatibly for i ≤ k. For 0 ≤ j ≤ k, let ej = max(di + d′j−i : 0 ≤ i ≤ j). Then

gd(θ×η|(X×Y )j) ≤ ej compatibly for j ≤ k. Moreover, if X = Y and θ = η, then the

maps (X×X)j
f−→BOej

can be chosen to satisfy f ◦T = f , where T : X×X → X×X

interchanges factors.

We will begin an induction using some known compatible bounds for gd(16, i).

Proposition 2.5 will, after restriction under the diagonal map, allow us to prove

gd((
∑

2ei)ξn) ≤ max{∑ gd(2eiξmi
) :

∑
mi = n}. These bounds are not yet strong

enough to yield new immersion results. Next, we must improve the bounds by taking

advantage of paired obstructions. The following result will be proved in Section 3.

Proposition 2.6. Let BOn[ρ] denote the pullback of BOn and the (ρ− 1)-connected

cover BO[ρ] over BO, and let s = min(ρ + 2m− 1, 4m− 1).
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(1) There are equivalences c′1 and c′2 such that the following diagram

commutes.

BO2m[ρ](s)
q1−−−→ (BO2m[ρ]/BO2m−1[ρ])(s) c′1−−−→ S2m

p2

y p′2

y i

y

BO2m+1[ρ](s)
q2−−−→ (BO2m+1[ρ]/BO2m−1[ρ])(s) c′2−−−→ ΣP 2m

2m−1.

Preparatory to the next two parts, we expand this diagram as

follows, with ci = c′i ◦ qi and (X, A) a finite CW pair.

A
f1−−−→ BO2m−1[ρ](s)

j

y p1

y
X BO2m[ρ](s)

c1−−−→ S2m

p2

y i

y
BO2m+1[ρ](s)

c2−−−→ ΣP 2m
2m−1.

(2) Suppose dim(X) < s, and we are given X
f−→ BO2m[ρ](s) such

that f ◦ j = p1 ◦ f1 and c1 ◦ f factors as X → X/A
g−→ S2m

with [g] divisible by 2 in [X/A, S2m].1 Then p2 ◦f lifts to a map

X
`−→BO2m−1[ρ](s) whose restriction to A equals f1.

(3) Suppose, on the other hand, dim(X) ≤ s, and we are given

X
f ′−→ BO2m+1[ρ](s) such that f ′ ◦ j = p2 ◦ p1 ◦ f1 and c2 ◦ f ′

factors as X → X/A
g′−→ ΣP 2m

2m−1 with [g′] divisible by 2 in

[X/A, ΣP 2m
2m−1]. Then f ′ is homotopic rel A to a map which

lifts to BO2m[ρ](s).

In Section 4, we will implement Propositions 2.5 and 2.6 to prove that the last part

of the following important result follows from the first five parts, while in Section 5,

we will establish the first five parts. Here and throughout, ν(−) denotes the exponent

of 2 in an integer.

Theorem 2.7. There is a function g(e, k) defined for e ≥ 4 and k ≥ 0 satisfying:

(1) If k ≥ 2e−3, then g(e, k) = 2e.

1Note that [X/A, S2m] is in the stable range, from which it gets its group
structure.
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(2) If e > 4k + 2, then g(e, k) = 0, while if e ≤ 4k + 2 and k > 1,

then g(e, k) ≥ 4k + 4.

(3) If 0 ≤ ` ≤ k, then g(e, k) ≥ g(e− 1, `) + g(e− 1, k − `)− 1.

(4) If [(e + 1)/4] ≤ 2` < 2e−3, then g(e, 2`) ≥ 2g(e− 1, `) + 1.

(5) Either g(e, k) = g(e, k − 1) or g(e, k) ≥ g(e, k − 1) + 2.

(6) gd(2e, k) ≤ g(e, k) compatibly for all k.

By restricting the lifting of P 8k+7 to P 8k+i for 0 ≤ i ≤ 6, we may use this result to

obtain compatible liftings of 2eξn for all n.

The function g will be semiexplicitly defined in (5.2), 5.3, and 5.4. In Table 2.8, we

list its values for small values of the parameters. We prefer not to tabulate the values

g(e, k) = 2e when k > 2e−3. The numbers in boldface will be given special attention

at the beginning of Section 5.

Table 2.8. Values of g(e, k) when e ≤ 15 and k ≤ 16.

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 7 16
5 6 15 22 32

e 6 5 14 21 31 37 46 53 64
7 0 13 20 30 36 45 52 63 68 77 84 94 100 109 116 128
8 0 12 19 29 35 44 51 62 67 76 83 93 99 108 115 127
9 0 12 18 28 34 43 50 61 66 75 82 92 98 107 114 126

10 0 12 17 27 33 42 49 60 65 74 81 91 97 106 113 125
11 0 0 16 26 32 41 48 59 64 73 80 90 96 105 112 124
12 0 0 16 25 31 40 47 58 63 72 79 89 95 104 111 123
13 0 0 16 24 30 39 46 57 62 71 78 88 94 103 110 122
14 0 0 16 23 29 38 45 56 61 70 77 87 93 102 109 121
15 0 0 0 22 28 37 44 55 60 69 76 86 92 101 108 120

To obtain the best results, we must insert one more bit of sectioning information—

linear vector fields on Sn yield vector fields on P n and hence sections of (n + 1)ξn =

τ(P n)⊕ ε. Let

ρ(4a + b) = 8a + 2b if 0 ≤ b ≤ 3.

Eckmann ([4]) used the Radon-Hurwitz theorem to show that Sn has ρ(ν(n + 1))− 1

linearly independent linear fields of tangent vectors and hence (n+1)ξn has ρ(ν(n+1))

linearly independent sections. We obtain the following well-known result.
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Proposition 2.9. For e ≥ 2, gd(2eξ2e−1) ≤ 2e − ρ(e).

If we wish to incorporate these into any subsequent induction argument, it is nec-

essary that the liftings be compatible with the liftings already obtained on the lower

skeleta. All we can easily assert is the following.

Proposition 2.10. Let

de,n =





0 if n ≤ ρ(e)

g(e, [n
8
]) if ρ(e) < n < 2e − ρ(e)

2e − ρ(e) if 2e − ρ(e) ≤ n < 2e.

Then gd(2eξn) ≤ de,n compatibly for n < 2e.

Proof. Since both composites stabilize to 2eξ, the obstruction to commutativity of

P 2e−ρ(e)−1 −−−→ BOde,2e−ρ(e)−1y
y

P 2e−ρ(e) −−−→ BO2e−ρ(e)

is a map P 2e−ρ(e)−1 → V2e−ρ(e), which is trivial for dimensional reasons. Here Vn is the

fiber of BOn → BO, and is (n − 1)-connected. The top map in this diagram comes

from 2.7.(6), while the bottom map comes from 2.9.

Remark 2.11. If we could assert compatibility of the Eckmann liftings with those

of Theorem 2.7.(6) on a larger skeleton, we might improve our immersion result to

the extent mentioned in Section 1.

Remark 2.12. If one inserts the Eckmann lifting earlier in the inductive determina-

tion of gd(2eξn), one obtains weaker lifting results than those of 2.7.(6). For example,

one can replace g(6, 7) by 52 = 64 − ρ(6), but then, by 2.10, one must also use

g(6, 6) = 52. If these values are maintained, then values of g(7, k) will have to be

increased for k = 6 and 8 ≤ k ≤ 14.

Finally, in Section 6, we apply the basic induction argument, Proposition 2.5, and

the results for gd(2eξ) in Proposition 2.10 to prove the following result by induction

on t.

Proposition 2.13. For e ≥ 7 and t ≥ 1, gd((2e +2e+1 + · · ·+2e+t)ξ2e−1) ≤ 2e−e−7.

This clearly implies Theorem 2.2, and hence the immersion theorem 1.1.
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3. Proof of general lifting results

In this section, we prove Propositions 2.5 and 2.6. For the first one, we find it more

convenient to work with sections rather than geometric dimension.

Theorem 3.1. Let X0 ⊂ · · · ⊂ Xk and Y0 ⊂ · · · ⊂ Yk be filtered spaces, and let θ

(resp. η) be a vector bundle over Xk (resp. Yk). Suppose given m0 (resp. n0) sections

of θ|Xk (resp. η|Yk), of which the first mi (resp. ni) are linearly independent (l.i.) on

Xi (resp. Yi) for 0 ≤ i ≤ k. Let

pj = min(mi + nj−i : 0 ≤ i ≤ j).

Let

Wj =
j⋃

i=0

Xi × Yj−i.

Then there are p0 sections of θ×η on Wk of which the first pj are linearly independent

on Wj for 0 ≤ j ≤ k. Moreover, if ` + i ≥ j and m` + ni ≥ pj, then the first pj

sections are l.i. on X` × Yi.

Note that we have m0 ≥ · · · ≥ mk, n0 ≥ · · · ≥ nk, and p0 ≥ · · · ≥ pk.

The following result will be used in the final step of the proof of Theorem 3.1.

Lemma 3.2. Suppose θ is an n-dimensional trivial vector bundle over a space X

with l.i. sections t1, . . . , tn. Suppose s1, . . . , sr are l.i. sections of θ, each of which

is a linear combination with constant coefficients of the ti. Then there is a set

s1, . . . , sr, s
′
r+1, . . . , s′n of linearly independent sections of θ.

Proof. Because of the constant-coefficient assumption, this is just a consequence of

the result for vector spaces, that a basis for a subspace can be extended to a basis for

the whole space.

Note that the assumption about constant coefficients was required. For example,

the section s(x) = (x, x) of S2×R3 cannot be extended to a set of three l.i. sections.

Proof of Theorem 3.1. Let r1, . . . , rm0 be the given sections of θ|Xk, and s1, . . . , sn0

the given sections of η|Yk. These are considered as sections of θ × η by using 0 on

the other component. Clearly {r1, . . . , rm0 , s1, . . . , sn0} is a set of p0 sections on Wk

which is linearly independent on W0. The proof will proceed by finding p1 linear

combinations, always with constant coefficients, of these sections which are l.i. on
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W1, then p2 linear combinations of these new sections which are l.i. on W2, etc.,

until going into the last stage we have pk−1 sections which are l.i. on Wk−1, and we

find pk linear combinations of them which are l.i. on Wk. Now we apply the lemma

repeatedly, starting with the last pk sections. At the first step, we extend this set

to a set of pk−1 sections l.i. on Wk−1, and continue until going into the last stage we

have p1 sections which are combinations of the original p0 sections and satisfy the

conclusion of the theorem for 1 ≤ i ≤ k. We apply the lemma one last time to extend

the set of p1 sections to the desired set of p0 sections.

Here is an explicit algorithm for the sections described in the first half of the

preceding paragraph. We may assume without loss of generality that m0 ≥ n0.

For j from 0 to k,

• For i from 1 to pj −n0 (resp. pj −m0), let r
(j)
i = ri (resp. s

(j)
i =

si). (Note that if n0 ≥ pj, then nothing happens at this step.)

• For i from max(1, pj − n0 + 1) to min(m0, pj), let both r
(j)
i and

s
(j)
pj+1−i equal r

(j−1)
i + s

(j−1)
pj+1−i.

• Then the sections r
(j)
i and s

(j)
i constructed in the two previous

steps give the sections which are l.i. on Wj. (Each section con-

structed in the second step can be counted as an r or an s, but

is only counted once.)

We must show that these have the required linear independence. Before doing

so, we illustrate with an example, computed by Maple. Let k = 4, [m0, . . . ,m4] =

[11, 6, 4, 1, 0] and [n0, . . . , n4] = [10, 8, 3, 2, 0]. Then [p0, . . . , p4] = [21, 16, 14, 9, 7].

The 16 sections l.i. on W1 are

r1, . . . , r6, r7 + s10, r8 + s9, r9 + s8, r10 + s7, r11 + s6, s5, . . . , s1.

The 14 sections l.i. on W2 are

r1, r2, r3, r4, r5 + r7 + s10, r6 + r8 + s9, r7 + r9 + s10 + s8, r8 + r10 + s9 + s7,

r9 + r11 + s8 + s6, r10 + s7 + s5, r11 + s6 + s4, s3, s2, s1.
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The 9 sections l.i. on W3 are

r1 + r6 + r8 + s9, r2 + r7 + r9 + s10 + s8, r3 + r8 + r10 + s9 + s7,

r4 + r9 + r11 + s8 + s6, r5 + r7 + r10 + s10 + s7 + s5, r6 + r8 + r11 + s9 + s6 + s4,

r7 + r9 + s10 + s8 + s3, r8 + r10 + s9 + s7 + s2, r9 + r11 + s8 + s6 + s1.

The 7 sections l.i. on W4 are

r1 + r3 + r6 + 2r8 + r10 + 2s9 + s7,

r2 + r4 + r7 + 2r9 + r11 + s10 + 2s8 + s6,

r3 + r5 + r7 + r8 + 2r10 + s10 + s9 + 2s7 + s5,

r4 + r6 + r8 + r9 + 2r11 + s9 + s8 + 2s6 + s4,

r5 + 2r7 + r9 + r10 + 2s10 + s8 + s7 + s5 + s3,

r6 + 2r8 + r10 + r11 + 2s9 + s7 + s6 + s4 + s2,

r7 + 2r9 + r11 + s10 + 2s8 + s6 + s3 + s1.

Now we continue with the proof. The property described in the first paragraph of

the proof, that the sections claimed to be l.i. on Wj are linear combinations of those

on Wj−1, is clear from their inductive definition.

Next we easily show that if i > pj − n0, then

r
(j)
i = s

(j)
pj+1−i = ri +

∑

`>i

c`r` + spj+1−i +
∑

`>pj+1−i

d`s`

with c` and d` integers. The point here is that the additional terms have subscript

greater than i or pj + 1− i. The proof is immediate from the inductive formula

r
(j)
i = r

(j−1)
i + s

(j−1)
pj+1−i

and the fact that pj ≤ pj−1. Indeed, from r
(j−1)
i we obtain terms r≥i and s≥pj−1+1−i,

and from s
(j−1)
pj+1−i we obtain terms s≥pj+1−i and r≥pj−1−pj+i.

Finally we show that the asserted sections are l.i. on Wj. Let x ∈ X` × Yj−`. Note

that {r1(x), . . . , rm`
(x)} is l.i., as is {s1(x), . . . , snj−`

(x)}, and that pj ≤ m` + nj−`.

If we form a matrix with columns labeled

r1, . . . , rm0 , sn0 , . . . , s1,
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and rows which express the sections, ordered as

r
(j)
1 , . . . , r

(j)
min(m0,pj)

, s
(j)
pj−m0

, . . . , s
(j)
1 , (3.3)

in terms of the column labels, then, by the previous paragraph, the number of columns

is ≥ (usually strictly greater than) the number of rows, the entry in position (i, i) is

1 for i ≤ min(m0, pj), and all entries to the left of these 1’s are 0. If i > min(m0, pj),

then all entries in the r-portion of row i are 0. Moreover an analogous statement is

true if the order of the rows and of the columns are both reversed. Thus there are

1’s on the diagonal running up from the lower right corner of the original matrix (for

min(n0, pj) positions) and 0’s to their right.

If a linear combination of our sections applied to x is 0, then the triangular form

of the matrix implies that the first m` coefficients are 0, while the triangular form

looking up from the lower right corner implies that the last nj−` coefficients are

0. Since pj ≤ m` + nj−`, this implies that all coefficients are 0, hence the desired

independence.

The same argument works for the last statement of the proposition. For k satisfying

j ≤ k ≤ ` + i, replace Wk by Wk ∪ (X` × Yi) Then everything goes through as above.

Proof of Proposition 2.5. Let D = dim(θ) and D′ = dim(η). Then di, d′i, ei, and

(X × Y )i of Proposition 2.5 correspond to D −mi, D′ − ni, D + D′ − pi, and Wi of

Theorem 3.1, respectively. The compatible gd bounds may be interpreted as vector

bundles θi over Xi of dimension di and isomorphisms θ|Xi ≈ θi ⊕ (D − di) and

θi|Xi−1 ≈ θi−1⊕ (di− di−1). The trivial subbundles yield, for all i, D− di l.i. sections

of θ on Xi such that the restrictions of the sections on Xi to Xi−1 are a subset of

the sections on Xi−1. Each of the sections on X0 has a largest Xi for which it is one

of the given l.i. sections. By [1, 1.4.1], this section on Xi can be extended over Xk

(although probably not as part of a linearly independent set). Analogous statements

are true for sections of η|Yi.

By Theorem 3.1, there are D + D′ − e0 l.i. sections of θ × η on W0 of which the

first D + D′ − ei are l.i. on Wi. Taking orthogonal complements of the spans of the

sections yields the desired compatible bundles on Wi of dimension ei, yielding the

first part of Proposition 2.5.
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For the second part, first note that in the algorithm in the proof of Theorem

3.1, if the r’s and s’s are equal, then the set of sections constructed on each Wi is

invariant under the interchange map T . Thus the same will be true of the orthogonal

complement of their span.

Proof of Proposition 2.6. (1) Let F1 = S2m−1 denote the fiber of BO2m−1[ρ] → BO2m[ρ].

There is a relative Serre spectral sequence for

(CF1, F1) → (BO2m[ρ], BO2m−1[ρ]) → BO2m[ρ]. (3.4)

The fibration V2m → BO2m[ρ] → BO[ρ] shows that the bottom class of BO2m[ρ]

is in dimension min(ρ, 2m). The spectral sequence of (3.4) shows that H∗(S2m) →
H∗(BO2m[ρ]/BO2m−1[ρ]) has cokernel beginning in dimension s+1, and so the map is

an s-equivalence. Thus the inclusion of the s-skeleton of BO2m[ρ]/BO2m−1[ρ] factors

through S2m to yield the map c′1, which is an equivalence.

The second map is obtained similarly. A map ΣP 2m
2m−1

g−→BO2m+1[ρ]/BO2m−1[ρ] is

obtained as the inclusion of a skeleton of CF2/F2, where F2 = V2m+1,2 is the fiber of

BO2m−1[ρ] → BO2m+1[ρ]. The relative Serre spectral sequence of

(CF2, F2) → (BO2m+1[ρ], BO2m−1[ρ]) → BO2m+1[ρ] (3.5)

implies that coker(g∗) begins in dimension s + 1, determined by H2m(CF2, F2) ⊗
Hmin(ρ,2m+1)(BO2m+1[ρ]) and the first “product” class in H4m(ΣV2m+1,2). The obtain-

ing of c′2 now follows exactly as for c′1.

(2) Let Q := BO2m+1[ρ]/BO2m−1[ρ] and E := fiber(BO2m+1[ρ] → Q). The com-

mutative diagram of fibrations

V2m+1,2 −−−→ BO2m−1[ρ] −−−→ BO2m+1[ρ]y
y

y
ΩQ −−−→ E −−−→ BO2m+1[ρ]
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implies that the quotient E/BO2m−1[ρ] has the same connectivity as ΩQ/V2m+1,2,

which is 1 less than that determined from (3.5); that is, E/BO2m−1[ρ] is (s − 1)-

connected. Thus, since dim(X) < s, the vertical maps in

BO2m−1[ρ] −−−→ BO2m+1[ρ] −−−→ ΣP 2m
2m−1y

y
y

E −−−→ BO2m+1[ρ] −−−→ Q

are equivalences in the range relevant for maps from X, A, and X/A. Since the

bottom row is a fibration, we may consider the top row to be one, too, as far as X is

concerned.

Since g is divisible by 2, and 2π2m(ΣP 2m
2m−1) = 0, we deduce that the composite

X/A
g−→S2m i−→ΣP 2m

2m−1

represents the 0 element of [X/A, ΣP 2m
2m−1]; i.e. the map is null-homotopic rel ∗. There

is a commutative diagram as below with the left sequence a cofiber sequence and the

right sequence a fiber sequence in the range of dim(X).

A
f1−−−→ BO2m−1[ρ]

j1

y j2

y

X
f−−−→ BO2m+1[ρ]

q

y
y

X/A
i◦g−−−→ ΣP 2m

2m−1

(3.6)

We have just seen that there is a basepoint-preserving homotopy

H : X/A× I → ΣP 2m
2m−1

from i ◦ g to a constant map. There is a commutative diagram

X × 0 ∪ A× I −→ BO2m+1[ρ]y
y

X × I
q×I−−−→ X/A× I

H−−−→ ΣP 2m
2m−1

where the top map is f on X×0 and j2◦f1 on each A×{t}. By the Relative Homotopy

Lifting Property of a fibration, there exists a map H̃ : X × I → BO2m+1[ρ] making
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both triangles commute. When t = 1, it maps into BO2m−1[ρ], since it projects to

the constant map at the basepoint of ΣP 2m
2m−1.

(3) We use the fact that 2 · 1ΣP 2m
2m−1

factors as

ΣP 2m
2m−1

col−→ S2m+1 η−→S2m ↪→ ΣP 2m
2m−1

to deduce that the composite

X/A
g′−→ ΣP 2m

2m−1
col−→ S2m+1

is null-homotopic since g′ is divisible by 2. An argument similar to the one in the

beginning of the proof of (2) shows that BO2m[ρ] → BO2m+1[ρ] → S2m+1 is a fibration

through dimension min(ρ + 2m, 4m + 1) ≥ s + 1. Since dim(X) ≤ s + 1, the lifting

follows as in the proof of (2). However, we need dim(X) ≤ s because the map c2 in

(1) only exists on the s-skeleton.

4. Inductive determination of a bound for gd(2e, k)

In this section, we prove that part (6) of Theorem 2.7 follows from its first five

parts, together with initial values of g(e, k) given in Table 2.8 when k = 1 or e = 4.

We begin by noting that 2.7.(6) is true for e = 4, since, by [7, 6.1] or Proposition 2.9,

gd(16ξ15) ≤ 7. The compatibility requirement is trivially satisfied because there are

only three values for the number of sections involved—no sections, full sections (i.e.

trivial bundle), and one intermediate value. Indeed 16ξn has no sections for n ≥ 16,

16 sections for n ≤ 8, and at least (and in fact exactly) 9 sections for 8 ≤ n ≤ 15.

These values, gd(16, 0) = 0, gd(16, 1) = 7, and gd(16, 2) = 16 agree with the values

of g(e, k) tabulated in Table 2.8.

Let ρ = ρ[e− 1]. Assume that we have obtained compatible liftings of 2e−1ξ8k+7 to

BOg(e−1,k)[ρ] for all k. For 0 ≤ k ≤ 2e−3, define

g1(e, k) := max{g(e−1, i)+g(e−1, k−i) : max(0, k−2e−4) ≤ i ≤ [k/2]}.
Note that by 2.7.(3),

g(e, k) ≥ g1(e, k)− 1. (4.1)
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Recall Ak = P 8k+7, and let

(A× A)k =
k⋃

i=0

Ai × Ak−i.

Then by Proposition 2.5 there are compatible symmetric liftings `k of 2e−1ξ×2e−1ξ on

(A×A)k to BOg1(e,k)[ρ] for all k. We precede by compatible maps dk : Ak → (A×A)k,

cellular maps homotopic to the diagonal. The composites Ak
`k◦dk−−−→ BOg1(e,k)[ρ] are

compatible liftings of 2eξ8k+7 for all k.

By decreasing induction on k starting with k = 2e−3, we will construct compatible

factorizations through BOg(e,k)[ρ] of the maps `k ◦dk. Assume inductively that, for all

j > k, compatible factorizations, up to homotopy rel Ak, of `j ◦dj through BOg(e,j)[ρ]

have been attained. If g(e, k) ≥ g1(e, k), then no factorization of `k ◦ dk is required,

and so our induction on k is extended. So we may assume g(e, k) = g1(e, k)− 1.

Let h = [k/2]. Let k′ be the largest integer less than k such g(e, k′) < g(e, k). By

2.7.(5), g(e, k′) < g(e, k)− 1, and hence by (4.1)

g1(e, k
′) ≤ g(e, k)− 1. (4.2)

By (4.2), 2.7.(4), and the last part of Proposition 3.1 (which is required for compati-

bility of the lifts of (A× A)k′ and Ah × Ah to BOg(e,k)−1), we have the commutative

diagram below, similar to (3.6).

Ak′
d′−−−→ (A× A)k′ ∪ Ah × Ah −−−→ BOg(e,k)−1[ρ](8k+7)

y
| | BOg(e,k)[ρ](8k+7)

y
y

y

Ak
dk−−−→ (A× A)k

`k−−−→ BOg(e,k)+1[ρ](8k+7)

y
y c

y

Ak/Ak′
d−−−→ (A× A)k/((A× A)k′ ∪ Ah × Ah)

`−−−→ C,

where C = Sg(e,k)+1 if g(e, k) is odd, and C = ΣP
g(e,k)
g(e,k)−1 if g(e, k) is even. The

maps labeled d are cellular maps homotopic to the diagonal. The map c is obtained
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similarly to the first paragraph of the proof of 2.6, using 2.7.(2)2 to conclude that

g(e, k) ≥ 4k + 4, provided k > 1. We will deal with the case k = 1 at the end of this

proof.

The quotient (A × A)k/(Ah × Ah) equals B ∨ T (B), where T reverses the order

of the factors, and B is the union of all cells ei × ej with i < j. By the symmetry

property of `k, `|T (B) = (`|B) ◦T . Since T ◦ d ' d, we conclude that ` ◦ d is divisible

by 2. Indeed, with rB denoting the retraction onto B,

[` ◦ d] = [(`|B) ◦ rB ◦ d] + [(`|T (B)) ◦ rT (B) ◦ d]

and we have

[(`|T (B)) ◦ rT (B) ◦ d] = [(`|T (B)) ◦ T ◦ rB ◦ d] = [(`|B) ◦ rB ◦ d].

Thus, by Proposition 2.6, `k ◦ dk is homotopic rel Ak′ to a map which lifts to

BOg(e,k)[ρ]. Note that the lifting into BOg(e,k)−1[ρ] was not needed if g(e, k) is odd.

Hence, once we handle the case k = 1 postponed above, we will have extended our

inductive lifting hypothesis, and so will have proved that there are compatible liftings

of Ak to BOg(e,k)[ρ] for all k. This extends the induction on e and proves Theorem

2.7.(6), assuming the first five parts of 2.7.

The case k = 1 was postponed above. We consider it here. The subtlety is that we

are asserting a lifting outside the stable range. We consider primarily the case e = 5.

The case e = 4, discussed at the beginning of the section, has yielded a commutative

diagram
P 7 −−−→ BO0[9]y

y
P 15 −−−→ BO7[9]y

y
P 23 −−−→ BO16[9].

The maps factor through maps on P 23
9 , P 15

9 , and P 7
9 = ∗. The map P 15

9

f−→BO7[9] is

obtained (see [8, 3.2]) as a compression of

P 15
8

r−→S8 2g−→ BO[9],

2By 2.7.(2), if g(e, k) < 4k + 4, then e > 4k + 2, and hence gd(2eξ8k+7) = 0, in
which case we are done.
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which lifts to BO7[9] by [3, 2.1]. Note that we could have chosen any lifting of the

stable map 16ξ to BO7, and we chose this one. By [3, 2.1], [2f ] lifts to BO6, and [4f ]

to BO5.

Proposition 2.5 yields a commutative diagram

P 15
9

d1−−−→ (P 15
9 × P 15

9 )(15) −−−→ BO7[9]y
y

y

P 23
9

d2−−−→ (P 23
9 × P 23

9 )(23) −−−→ BO16[9]y
y

y

P 31
9

d3−−−→ (P 31
9 × P 31

9 )(31) −−−→ BO23[9]y
y

y

P 39
9

d4−−−→ (P 39
9 × P 39

9 )(39) −−−→ BO32[9],

where the horizontal maps are liftings of 16ξ × 16ξ, and di are cellular maps homo-

topic to the diagonal. Proposition 2.6 then allows an improvement to a commutative

diagram
P 15

9 −−−→ P 15
9 ∨ P 15

9 −−−→ BO7[9]y
y

P 23
9 −→ BO15[9]y

y
P 31

9 −→ BO22[9]y
y

P 39
9 −→ BO32[9].

We could not use 2.6 to lift the top map to BO6 because the dimensional conditions

were not satisfied. However, the class of this map is 2 times the map f described

in the preceding paragraph, and hence, by the argument there, it lifts to BO6, as

desired. A very similar argument works when e = 6 to lift to BO5.
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5. The function g(e, k)

In this section, we define the function g(e, k) which has been used in the previous

sections, and prove the first five parts of Theorem 2.7, its numerical properties which

were already used to prove 2.7.(6), its important geometrical property.

Let lg(k) = [log2(k)]. Except for an irregularity when k = 1, g is determined by

g(k, lg(k) + 4), which we will denote by f(k). For k ≤ 16, this function f(k) of one

variable has the values indicated in boldface in Table 2.8. The companion equations

relating f and g are

f(k) = g(lg(k) + 4, k), (5.1)

and, if k > 1,

g(e, k) =





2e e ≤ lg(k) + 3

max(4k + 4, f(k)− e + lg(k) + 4) lg(k) + 4 ≤ e ≤ 4k + 2

0 e > 4k + 2. (5.2)

For k = 1, the values of g are as in Table 2.8. The reason for the irregularity when

k = 1 is that in the previous section we used special considerations to get liftings of

bundles over P 15 beyond the stable range. It was important to do this to get a good

start on the induction.

The formula for f is too complicated to write explicitly, largely due to requirement

2.7.(5). It utilizes, among other things, the following auxiliary function.

Definition 5.3.

δ(n) = max(ν(n)− 1, min(2, δ′(n))),

where

δ′(n) = max{ν(n− d)− 4d + 3 : 2 ≤ d < n}.
Recall that ν(−) denotes the exponent of 2. For example, δ(n) = ν(n) − 1 if n ≡ 0

mod 8, while

δ(n) =





1 if ν(n− 2) = 6

2 if ν(n− 2) ≥ 7

0 if ν(n− 3) = 9

are the only cases with n < 310 + 3 for which δ(n) 6= ν(n)− 1.
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A first approximation to f is given by

f ′0(n) = 8n− lg(n) + δ(n).

We explain now the rationale behind the definition of δ. The (ν(n)−1)-part is present

just to make the basic induction work and to agree with some initial values. If it were

not for two delicate matters, we could just define f(n) = 8n− lg(n) + ν(n)− 1. The

first of these delicate matters is the stability requirement in 2.7.(2), illustrated by

the last two 12’s in column 2 and the last three 16’s in column 3 of Table 2.8. The

smallest n for which δ(n) 6= ν(n) − 1 is n = 66; δ(66) = 1, using d = 2 in 5.3. The

need for this is seen in

522+δ(66) = 8·66−6+δ(66) = f(66) = g(10, 66) ≥ g(9, 64)+g(9, 2)−1 = 512+12−1.

Note from Table 2.8 that the 12 = g(9, 2) is 1 greater than it would have been were

it not for the stability considerations. This “1” is intimately related to δ(66) = 1.

The other delicate matter is that 2.7.(5) requires f(n) 6= f(n − 1) + 1. This

is the cause of most of the complications. Recall that the reason that this is so

important goes back to Proposition 2.6.(3), which requires that if you want to utilize

paired obstructions to lift from 2m + 1 to 2m, compatibly with a given lifting on a

subcomplex, then that lifting must be to 2m− 1.

Now we give the definition of f .

Definition 5.4. For n ≥ 1, let f ′0(n) = 8n− lg(n) + δ(n) and

f0(n) = max{f ′0(m) : m ≤ n}.
Note that f0 is an increasing function of n. Define s(n) and f(n) := f0(n) + s(n)

inductively by f(0) = 0 and for n ≥ 1

s(n) =





1 if f0(n) = f(n− 1)± 1

0 otherwise.

Note that the − and + parts of ± are present for different reasons. The − is

present to make f increasing, while the + occurs to prevent f(n)− f(n− 1) = 1. For

example, if f(n − 2) = f0(n − 2) = A, f0(n − 1) = A + 1, and f0(n) = A + 1, then

s(n− 1) = 1 for the latter reason, yielding f(n− 1) = A + 2, and so s(n) = 1 for the

former reason.
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Then f is an increasing function such that f(n) − f(n − 1) 6= 1. Before proving

that f (actually the associated g) satisfies the required properties of 2.7, we give a

few examples.

Example 5.5. Let u always denote an odd positive integer, and A an arbitrary pos-

itive integer.

• s(n) = 0 if n < 27 +1, because f ′0(n)−f ′0(n−1) ≥ 8−ν(n−1).

• s(u · 27 + 1) = 1 for most odd integers u. When u = 1, this is

due to

f ′0(2
7 + ε) = 210 +





−15 ε = −1

−1 ε = 0

0 ε = 1

9 ε = 2.

However, if e ≥ 29 + 1, then s(2e + 27 + 1) = 0 due to δ(2e +

27 + 1) > −1.

• If k ≥ 2 and mk = max(ν(k)− 1, 2), then for most odd integers

u, s(u · 28k+mk + k) = 1. When k = 2, this is due to

f ′0(2
18 + ε) = 221 +





−26 ε = −1

−1 ε = 0

−11 ε = 1

0 ε = 2

5 ε = 3.

• s(u · 2210+1 +28 +1) = 1 for most u, using d = 28 +1 in δ(n) in

5.3. Similarly, s(2211+2+29+1) = 1 and s(A ·2212+3+210+1) =

1.

• s(2220+16 + 217 + ε) = 1 for 0 ≤ ε ≤ 2, since

f0(2
220+16 + t) = 2220+19 +





−1 0 ≤ t < 217

0 217 ≤ t ≤ 217 + 1

2 t = 217 + 2.

• Similarly, s(2212+8 + 29 + ε) = 1 for 0 ≤ ε ≤ 1.

Now we proceed to the proof of the relevant portions of 2.7. The reader can

easily check that the formulas (5.2) and 5.4 agree with Table 2.8 in its limited range.
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Properties (1) and (2) of 2.7 are immediate from (5.2). To establish property (5), we

first note that f(n) 6= f(n − 1) + 1 by Definition 5.4. This and (5.2) imply 2.7.(5)

with the only minor worry being about the truncation of g(e, k) at 4k + 4, but this

only occurs when ν(k) < 4, and from this it follows easily that g(e, k+1) > g(e, k)+1

in these cases. Observation of columns 2, 3, and 4 of Table 2.8 should convince the

reader that this is true.

We now proceed to prove 2.7.(3). We first prove that it is true using f0. First note

that we need not worry that f0 is a max, for the sum of the parameters which yield

the max for the terms of the RHS of 2.7.(3) will be admissible for the evaluation of

the LHS. It suffices to prove 2.7.(3) when e = lg(k) + 4, in which case it reduces to

f ′0(k) ≥ f ′0(`)− (lg(k) + 3) + lg(`) + 4 + f ′0(k − `)− (lg(k) + 3) + lg(k − `) + 4− 1,
(5.6)

unless g(e− 1, `) = 4` + 4 due to truncation. We will deal with this possibility later.

Using 5.4, (5.6) reduces to

δ(k) + lg(k) ≥ δ(`) + δ(k − `) + 1, (5.7)

provided 2 ≤ ` ≤ k − 2.

The case ` = 1 is easily handled. Then g(lg(k) + 3, `), which occurs in the simpli-

fication to (5.6), is 0 unless lg(k) ≤ 3, and 2.7.(3) is easily verified in these cases.

Returning to the proof of (5.7), write k = 2a + m with 0 ≤ m < 2a. Cases with

a ≤ 6 are easily checked directly, and so we assume a ≥ 7. Assume without loss of

generality that ν(`) ≥ ν(k − `). If ν(`) < 3, then (5.7) is clearly satisfied since its

LHS is ≥ 6, while its RHS is ≤ 5.

Now we may assume ν(`) ≥ 3, and hence δ(`) = ν(`) − 1. If k ≡ 0 mod 8, then

ν(k) ≥ ν(k − `), and so (5.7) follows from a ≥ ν(`). Hence we may assume k 6≡ 0

mod 8. Then ν(k − `) = ν(k) and δ(k − `) − δ(k) ≤ 2 − (−1) = 3, so that the only

way (5.7) might fail is if ν(`) ≥ a − 2; i.e., if ` = 2a, 2a−1, 2a−2, 3 · 2a−2, or possibly

(depending on how large m is) 3 · 2a−1, 5 · 2a−2, and 7 · 2a−2. One easily verifies that

(5.7) holds in these cases. For example, if ` = 2a, then (5.7) reduces to showing

δ(2a + m) ≥ δ(m). This is true because any value of d in 5.3 that causes δ(m) to be

greater than its minimal value will also cause the same for δ(2a + m). If ` = 2a−1,

then (5.7) reduces to δ(2a + m) ≥ δ(2a−1 + m)− 1, which is true with 1 to spare.
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We complete our proof of the f0-version of 2.7.(3) by considering what happens in

the postponed case in which g(e− 1, `) = 4` + 4 due to truncation. The definition of

the function δ has been formulated to handle this case. We begin by illustrating with

the case ` = 3, e = 15. Note that g(14, 3) is the lowest 16 in the k = 3 column of

Table 2.8, and is 3 larger than it would have been if the values of g(e, 3) were allowed

to decrease below 16. In the context of (5.7), that would add 3 to the RHS. Since

e = lg(k) + 4 in (5.6), we have lg(k) = 11. So k = 211 + t, 0 ≤ t < 211, and we need

to verify

δ(211 + t) + 11 ≥ δ(3) + δ(211 + t− 3) + 4. (5.8)

Since δ(3) = −1, (5.8) reduces to

δ(211 + t) + 8 ≥ δ(211 + t− 3). (5.9)

The only way this could fail is if ν(211 + t − 3) ≥ 9. In Table 5.10, we tabulate the

values of both sides of (5.9) for these values of t, and see that (5.9) holds in each.

The definition of δ has been formulated so that it will always work this way.

Table 5.10. Verification of (5.9).

t δ(211 + t) + 8 δ(211 + t− 3)
3 2 + 8 10

29 + 3 0 + 8 8
210 + 3 1 + 8 9

3 · 29 + 3 0 + 8 8

The general case of 2.7.(3) when truncation occurs is extremely similar. Let ` > 1

be arbitrary.3 The worst case occurs when e = 4` + 3, because then g(e− 1, `) is the

last nonzero entry in its column. The amount of truncation is max(2− δ(`), 0). This

is achieved from (5.2) and 5.4 as

4`+4− (f ′0(`)− (4`+2)+lg(`)+4) = 8`+2− (8`− lg(`)+δ(`))− lg(`).

Since e = lg(k)+4 in (5.6), we have k = 24`−1 + t with 0 ≤ t < 24`−1. The analogue

of (5.7), which we must establish, is

δ(24`−1 + t) + 4`− 1 ≥ δ(`) + δ(24`−1 + t− `) + 1 + (2− δ(`)),

3There is no truncation when ` = 1.
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which reduces to

δ(24`−1 + t) + 4` ≥ δ(24`−1 + t− `) + 4. (5.11)

This inequality is easily verified, using the definition of δ, as follows:

LHS ≥ 7 ≥ RHS if ν(t− `) ≤ 3

LHS ≥ 4`− 1 ≥ RHS if 3 ≤ ν(t− `) < 4`− 3

LHS ≥ ν(t− `) + 3 ≥ RHS if 4`− 3 ≤ ν(t− `) ≤ 4`− 1.

Note that ν(t− `) can be no larger than 4`− 1. The first inequality in the third line

follows from 5.3.

Having now verified 2.7.(3) when f0 is used, we next show that it follows that this

is also valid when f is used. Because 0 ≤ f − f0 ≤ 1, the principal worry is to show

that if equality was attained in (5.7) or (5.11) using f0, then it cannot happen that

s = 1 on the RHS but not on the LHS, causing the inequality to fail.4 Equality occurs

in (5.7) using f0 only when k = 2a + m, 0 ≤ m < 2a, and ` = 2a. Thus we need to

show here that

(δ + s)(2a + m) ≥ (δ + s)(m). (5.12)

Some typical occurrences of s(n) = 1 were given in Example 5.5 and a complete

description of these is given in Lemma 6.7. It follows from this that the only way

that we can have s(m) = 1 while s(2a + m) = 0 is if δ(2a + m) > δ(m), as occurred

for m = 27 + 1 and a ≥ 29 + 1 in the second bullet in 5.5. In such cases, (5.12) is

necessarily satisfied because of the increase in δ. In the notation of Lemma 6.7, if

m = A0 + · · · + At has s(m) = 1, then 2a + m with 2a > m can be written with

A0 replaced by 2a + A0, with ν(−) unchanged. Then the condition which caused

s(m) = 1 will also cause s(2a + m) = 1 unless δ(2a + m) 6= δ(m). However, adding a

large 2-power such as 2a cannot decrease δ. Thus δ(2a + m) > δ(m) and hence (5.12)

is satisfied.

The only cases of equality in (5.11) occur when ν(t− `) ≥ 4`− 4. Thus the (δ + s)-

version of (5.11) could fail only if s(24`−1+u2e) = 1 with e ≥ 4`−4 (and u2e < 24`−1).

But Lemma 6.7 shows that s(n) = 1 only when n has at least one long string of 0’s

4The possibility of two cases of s = 1 on the RHS of (5.7) when the inequality
was satisfied with 1 to spare can be eliminated similarly.
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in its binary expansion, which is not the case for n = 24`−1 + u2e with e ≤ 4`− 4 and

u2e < 24`−1. This completes the proof of 2.7.(3).

Next we prove 2.7.(4). Note that it is similar to 2.7.(3), except it is stronger by

2. Note also from Table 2.8 that the claim is false when 2` = 2e−3, for we have

g(e, 2e−3) = 2e = 2g(e − 1, 2e−4). The exclusion on the other side of 2.7.(3), when

[(e+1)/4] > 2`, is because both g(e, 2`) = 0 and g(e−1, `) = 0 in this case. Similarly

to (5.7), the claim reduces to

(δ + s)(2`) + lg(2`) ≥ 2(δ + s)(`) + 3. (5.13)

Note that for ` < 28,

(δ + s)(`) =





ν(`) if ` = 26 + 2, 27 + 1, or 27 + 2

ν(`)− 1 otherwise.

For these three special values of `, (5.13) is easily verified, while if (δ+s)(`) = ν(`)−1,

then (5.13) reduces to lg(`) ≥ ν(`), which is clearly true. Thus (5.13) is true for ` < 28.

The reason that this analysis didn’t catch the failure of 2.7.(4) to hold when 2` = 2e−3

is that the analysis deals with f(−), and the values g(e, 2e−3) = 2e sit above the f -

values in Table 2.8; for example, f(8) = g(7, 8) = 63, not the 64 which sits above it

in the table.

If ` ≥ 28, so that lg(2`) ≥ 9, and δ(`) < 3, then (5.13) is certainly true. Here we

use 5.5 or 6.7 to see that s cannot play a significant role here; the second value of n

with s(n) > 0 is s(218 +2) = 1, for which lg(n) will certainly make (5.13) hold. Thus,

we may assume ` ≡ 0 mod 8 and then δ(`) = ν(`)− 1, and hence (5.13) reduces to

lg(`) + s(2`) ≥ ν(`) + 2s(`). (5.14)

Note that

lg(`)− ν(`) =





0 ` = 2a

1 ` = 2a−1

≥ 2 otherwise.

Since s(2e) = 0, we deduce that (5.14) holds.

6. Inductive determination of a bound for gd of normal bundle

In this section, we prove the following result, of which Proposition 2.13 is an im-

mediate consequence.
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Theorem 6.1. Let e ≥ 7 and

d′e,n =





0 if n ≤ ρ(e)

g(e, [n
8
]) if ρ(e) < n < 2e − ρ(e)

max(g(e, [n
8
])− 1, 2e − ρ(e)) if 2e − ρ(e) ≤ n ≤ 2e − 9

2e − e− 7 if 2e − 8 ≤ n ≤ 2e − 1.

For t ≥ 1, gd((2e + 2e+1 + · · ·+ 2e+t)ξn) ≤ d′e,n compatibly for n < 2e.

Remark 6.2. The all-important 2e − e − 7 arises from the bound g(e, 2e−4 − 1) +

g(e + 1, 2e−4) = 2e−1 − e− 5 + 2e−1 − 2 for gd((2e + 2e+1)ξ2e−1).

Example 6.3. We illustrate the argument when e = 7. Here we have

d′e,n =





100 if 104 ≤ n ≤ 111

112 if 112 ≤ n ≤ 119

114 if 120 ≤ n ≤ 127.

By Proposition 2.10, we can replace the 109 and 116 in the (e = 7)-row of Table 2.8

by 112 and 112. Call the values in this modified row g′(7, k). These are compatible

bounds for gd(27, k). Apply Propositions 2.5 and 2.6 to this to get a modified (e = 8)-

row, for k ≤ 15, with the 108 and 115 replaced by 111 and 114. Call the values in

this new row g′(8, k). The 111 for g′(8, 14) is determined by g′(7, 14) + g′(7, 0)− 1 =

112 + 0 − 1, while the 114 for g′(8, 15) is determined by g′(7, 7) + g′(7, 8) − 1 =

52 + 63− 1. Now apply Proposition 2.5 to g′(7, k) and g′(8, k) to obtain compatible

bounds for gd((27 + 28)ξn), n ≤ 127. The value d′7,119 = 112 is determined by

g′(7, 14) + g′(8, 0) = 112 + 0, while d′7,127 = 114 is determined by g′(7, 0) + g′(8, 15) =

0 + 114 or g′(7, 7) + g′(8, 8) = 52 + 62. Applying Proposition 2.5 to the d′7,n bounds

for gd((27 + 28)ξn) and the g(9, k) bounds for gd(29ξ8k+7) maintains the d′7,n bound

for gd((27 + 28 + 29)ξn), and the addition of larger 2eξ is handled in the same way.

Proof of Theorem 6.1. The above example when e = 7 was slightly simpler than the

general situation because ρ(7) ≡ 0 mod 8. Each value g(e, k) gives a bound for

gd(2eξi) for 8k ≤ i ≤ 8k + 7. If ρ(e) 6≡ 0 mod 8, then the skip of d′e,n at n = 2e− ρ(e)

occurs in the middle of one of these ranges, forcing a refinement of the filtering of

P 2e−1. It becomes convenient to filter it using all skeleta P i.

The proof will proceed in five steps.

(1) Use Proposition 2.10 for gd(2eξn) for n < 2e.
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(2) Use (1) and Propositions 2.5 and 2.6 to prove

gd(2e+1ξn) ≤





0 n ≤ ρ(e + 1)

g(e + 1, [n
8
]) ρ(e + 1) < n < 2e − ρ(e)

max(g(e + 1, [n
8
]), 2e − ρ(e)− 1) 2e − ρ(e) ≤ n ≤ 2e − 9

2e − e− 7 2e − 8 ≤ n ≤ 2e − 1

compatibly for n < 2e.

(3) Use (1) and (2) and Proposition 2.5 to prove

gd((2e + 2e+1)ξn) ≤ d′e,n

compatibly for n < 2e.

(4) By induction on t, using (2) to get started and Propositions

2.5 and 2.6, show gd(2e+tξn) has the same bound as in (2),

compatibly for n < 2e. We can actually do better than this,

but this is all we need.

(5) By induction on t, using (3) to get started and then also (4) and

2.5, show that gd((2e + 2e+1 + · · ·+ 2e+t)ξn) ≤ d′e,n compatibly

for n < 2e, completing the proof of the theorem.

Step (1) is immediate, and steps (4) and (5) are similar to and easier than steps

(2) and (3), respectively. We now prove step (2).

For n < 2e − ρ(e), this is Theorem 2.7.(6), which has already been proven. For

2e − ρ(e) ≤ n ≤ 2e − 9, we have gd(2e+1ξn) ≤ max{de,i + de,n−i − 1 : 0 ≤ i ≤ n}. We

must show that each de,i +de,n−i−1 is ≤ either g(e+1, [n
8
]) or 2e−ρ(e)−1. For those

i such that de,i = 2e − ρ(e), we have de,n−i = 0, and so the desired result is true in

these cases. For other i, the numbers de,i − de,n−i − 1 are among those which yielded

gd(2e+1ξn) ≤ g(e + 1, [n
8
]) in 2.7.(6), yielding the claim in these cases. Finally, using

(1), 2.5, and 2.6,

gd(2e+1ξ2e−1) ≤ max{2e−ρ(e)−1, g(e, `)+g(e, 2e−3−1−`)−1 : [ρ(e)
8

] ≤ ` ≤ 2e−3−1−[ρ(e)
8

]}.
We have

g(e, `) + g(e, 2e−3− 1− `) = 2e− 2e + (δ + s)(`) + (δ + s)(2e−3− 1− `),

which for 2 ≤ ` ≤ 2e−3−3 and e ≥ 7 has maximum value of 2e− e−6 when ` = 2e−4.
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We will first prove (3) using f0 instead of f , and then explain why it still holds

when f is used. We wish to prove

de,i + g̃d(2e+1ξn−i) ≤ d′e,n, (6.4)

where g̃d(2e+1ξn−i) refers to the bound given in (2).

If n < 2e − ρ(e), there are two cases depending on whether or not g(e + 1, [n
8
]) =

g(e, [n
8
]). This equality occurs only for the bottom few nonzero elements in columns

in (the extension of) Table 2.8 for which the column number is not divisible by 8. If

g(e + 1, [n
8
]) < g(e, [n

8
]), then

de,i + g̃d(2e+1ξn−i) = g(e, [ i
8
]) + g(e + 1, [n−i

8
])

≤ g(e, [ i
8
]) + g(e, [n−i

8
])

≤ g(e + 1, [n
8
]) + 1 (6.5)

= g(e, [n
8
]) = d′e,n.

Here we used 2.7.(3) at the middle step. If, on the other hand, g(e+1, [n
8
]) = g(e, [n

8
]),

then g(e, j) = g(e + 1, j) = 0 for all j < [n
8
]. (See Table 2.8.) Thus in this case

de,i + g̃d(2e+1ξn−i) ≤ g(e, [n
8
]), since at least one term is 0.

Now assume 2e − ρ(e) ≤ n ≤ 2e − 9. (a) If 2e − ρ(e) ≥ g(e, [n
8
]), then de,i +

g̃d(2e+1ξn−i) ≤ g(e, [n
8
]) as in the previous paragraph, and this is ≤ 2e − ρ(e), as

claimed. (b) The case in which 2e − ρ(e) < g(e, [n
8
]) requires a little more argument.

If g(e+1, [n−i
8

]) < g(e, [n−i
8

]), then the desired inequality follows similarly to (6.5). The

first ≤ there becomes <, and so we deduce de,i + g̃d(2e+1ξn−i) ≤ g(e, [n
8
])− 1 = d′e,n.

If, on the other hand, g(e + 1, [n−i
8

]) = g(e, [n−i
8

]), then g(e, k) with k = [n−i
8

] must be

one of the equal bottom nonzero entries in a column k ≥ 2, with e = 4k− 1 + r with

ν(k) ≤ r ≤ 2. Then (6.4) becomes

4k + 4 ≤ g(e, 2e−3 − t)− 1− g(e, 2e−3 − t− k) (6.6)

with [n
8
] = 2e−3−t. The hypothesis 2e−ρ(e) < g(e, 2e−3−t) implies 8t−ν(t) < e+5 ≤

4k + 6. This implies ν(t + k) ≤ lg(2k) and so the RHS of (6.6) is ≥ 8k − 1− lg(2k).

Since 4k + 4 ≤ 8k − 1− lg(2k) for k ≥ 2, (6.6) is valid, hence so is (6.4) in this case.

Note that the inequalities in this paragraph are quite crude, but are all that we need

here.
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Finally, suppose 2e − 8 ≤ n ≤ 2e − 1. We have

de,0 + g̃d(2e+1ξ2e−1) = 2e − e− 7.

Cases in which de,i = 2e−ρ(e) have g̃d(2e+1ξn−i) = 0, and, since 2e−ρ(e) < 2e−e−7,

(6.4) is valid in these cases. In other cases, the LHS of (6.4) equals

g(e, `) + g(e + 1, 2e−3 − 1− `) = 2e − 2e− 1 + δ(`) + δ(2e−3 − 1− `).

The largest value of this occurs when ` = 2e−4 and is 2e − e− 7.

What remains is to show that incorporating positive values of s cannot affect va-

lidity of the above argument. We saw in the paragraph containing (5.12) that 2.7.(3),

which is the primary tool throughout this proof, is valid with s incorporated. The

above argument also required that f(2e−3−1) = f0(2
e−3−1); i.e., that s(2e−3−1) = 0.

This is clear from Lemma 6.7, which implies that if s(n) > 0 then n has at least one

huge gap (i.e. string of 0’s) in its binary expansion, where “huge” is one with a

number of 0’s nearly eight times as large the value of the number which follows it.

We close with a complete account of how s(n) can be nonzero in 5.4.

Lemma 6.7. Suppose s(n) = 1.

(1) If this is due to f0(n) = f(n − 1) + 1 in 5.4, then either n =

A0 + A1 with ν(A0) = 8A1 + δ(n), or for some t > 1, n =

A0 + A1 + · · · + At with ν(A0) = 8A1 + ν(A1) − 1, ν(Ai) =

8Ai+1+ν(Ai+1)−2 for 1 ≤ i < t−1 and ν(At−1) = 8At+δ(n)−1.

(2) If this is due to f0(n) = f(n − 1) − 1 in 5.4, then n = n∗ + B

with n∗ as in (1) and ν(At) ≥ 8B + 3.

Example 6.8. We illustrate this with the next-to-last example from 5.5. We have

s(2220+16 + 217 + ε) = 1 as follows:

• If ε = 0, it is type 6.7.(1) with A0 = 2220+216
and A1 = 217.

• If ε = 1, it is type 6.7.(2) with n∗ = A0 + A1 as in the case

ε = 0 just considered, and B = 1.

• If ε = 2, it is type 6.7.(1) with A0 = 2220+16, A1 = 217, and

A2 = 2.
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Proof. (1) The inductive definition of s and f in 5.4, without regard for the specific

definition of f0, just the fact that f0 is an increasing function, implies5 that if s(n) = 1

due to f0(n) = f(n− 1) + 1, then there is a positive integer t and integers n0 < · · · <
nt = n such that

f ′0(ni)− f ′0(ni−1) =





1 i = 1

2 2 ≤ i ≤ t.

(It must also be true that if ni−1 < m < ni, then f ′0(m) < f ′0(ni).)

Consider first the case t = 1. The difference f ′0(m) − f ′0(m − 1) is at least 5

(= 8 + (−1)− 2) unless ν(m− 1) ≥ 4. Thus the only way that f ′0(n1)− f ′0(n0) might

equal 1 is if n0 = u · 2e with e ≥ 4 and n = n1 = u · 2e + A1 with e = 8A1 + δ(n),

using 5.4 and δ(n0) = e − 1. Note that A0 in the lemma equals u · 2e. The claim of

the lemma when t = 1 is thus established.

Now let t = 2. We must have n0 = A0 and n1 = A0 + A1 as in the previous

paragraph. If n = n2 = A0 + A1 + A2 with f ′0(n2) = f ′0(n1) + 2, then

8A2 + δ(n) = δ(n1) + 2.

This implies that δ(n1) > 3 and hence δ(n1) = ν(A1) − 1 by 5.3. This yields the

claim ν(A1) = 8A2 + δ(n) − 1 of the lemma when t = 2. Note that the condition

ν(A0) = 8A1 +δ(A0 +A1) will now be given in the more explicit form with δ(A0 +A1)

replaced by ν(A1)− 1, since we now have the additional information that ν(A1) > 3.

We will conclude with the case t = 3, after which the pattern for larger values of t

will have become clear. We must have n0 = A0, n1 = A0 +A1, and n2 = A0 +A1 +A2

as in the previous paragraph. If n = n2 + A3 satisfies f ′0(n3) = f ′0(n2) + 2, then

8A3 + δ(n) = δ(n2) + 2.

This implies that δ(n2) > 3 and hence δ(n2) = ν(A2) − 1, and yields the claim

ν(A2) = 8A3 + δ(n) − 1 of the lemma when t = 3. The condition ν(A1) = 8A2 +

δ(A0 + A1 + A2)− 1 has δ(A0 + A1 + A2) replaced by ν(A2)− 1.

(2) Cases of s(n) = 1 due to f0(n) = f(n − 1) − 1 must be caused by an n∗
as in (1) with n = n∗ + B and f ′0(n∗ + i) ≤ f ′0(n∗) for 1 ≤ i ≤ B. This can

5One can formulate and prove a closely-related result about how to form from a
strictly increasing sequence 〈ni〉 of integers an increasing sequence 〈mi := ni + si〉
with si = 0 or 1 such that mi+1 −mi never equals 1.
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only happen if 8B + δ(n∗ + B) ≤ δ(n∗). As this implies that δ(n∗) > 3, we have

δ(n∗) = ν(n∗) − 1 = ν(At) − 1. Because n∗ contains large gaps, we must also have

δ(n∗ + B) ≥ 2, and hence ν(At) ≥ 8B + 3.
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