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This paper is dedicated to Michael Barratt on the occasion of his 80th birthday.

ABSTRACT. We prove that RP2°~! can be immersed in R2 —e—8
provided e > 7. If e > 14, this is 2 better than previously known
immersions. Our method is primarily an induction on geometric
dimension, incorporating also sections obtained from the Radon-
Hurwitz theorem.

1. STATEMENT OF RESULT AND BACKGROUND

Our main result is the following immersion theorem for real projective spaces.
Theorem 1.1. If e > 7, then RP* ' can be immersed in R —¢~8,

This improves, in these cases, by 2 dimensions upon the result of Milgram ([9]),
who proved, by constructing bilinear maps, that if n = 7 mod 8, then RP"™ can be
immersed in R?"~*("~4 where a(n) denotes the number of 1’s in the binary expansion
of n. In [2, 1.2], the first and third authors used obstruction theory to prove that
if n = 7 mod 8, then RP™ can be immersed in R**~P, where D = 14,16,17,18 if
a(n) = 7,8,9,> 10. That result, with n = 2¢ — 1, is 1 or 2 dimensions stronger
than ours for 7 < e < 11. If e > 13, then our result improves on the result of [2] by
e — 12 dimensions. Thus Theorem 1.1 improves on all known results by 2 dimensions
if e > 14.

In [6], James proved that RP*~' cannot be immersed in R —2¢-0

where § =
3,2,2,4fore =0,1,2,3 mod 4. In [5], an immersion result for RP* ~! was announced
in dimension 1 greater than that of James’ nonimmersion, which would have been
optimal. However, a mistake in the argument of [5] was pointed out by Crabb and
Steer. We hope that a slight improvement in our argument might enable us to prove an
~ Date: January 11, 2007.
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immersion result in dimension 1 greater than that of James’ nonimmersion (possibly
2 greater if e = 3 mod 4). We will point out in Remark 2.11 what would be required

for this improvement.

2. OUTLINE OF PROOF

In this section we outline the proof of Theorem 1.1. In subsequent sections, we will
fill in details.

If 0 is a vector bundle over a compact connected space X, we define the geometric
dimension of #, denoted gd(6), to be the fiber dimension of # minus the maximum
number of linearly independent sections of §. Equivalently, if dim(f) = n, then gd(9)
equals the smallest integer k such that the map X LR BO(n) which classifies 6 factors
through BO(k). The following lemma is standard (See e.g. [10, 4.2]). Here and
throughout, &, denotes the Hopf line bundle over RP".

Lemma 2.1. Let ¢p(n) denote the number of positive integers i satisfying i < n and
i=0,1,2,4 mod 8. Supposen > 8. Then RP"™ can be immersed in R"* if and only
if gd((2° —n —1)&) < k.

Thus Theorem 1.1 will follow from the following result, to the proof of which the
remainder of this paper will be devoted.

Theorem 2.2. If e > 7, then gd((22 ~' — 2°)€pe_1) <26 —e —T.

The bulk of the work toward proving Theorem 2.2 will be a determination of upper
bounds for gd(2°¢,,) for all n = 7 mod 8 by induction on e. A similar method could be
employed for all n, but we restrict to n = 7 mod 8 to simplify the already formidable
arithmetic. We let A, = RP®*7 and denote gd(mé&s,7) by gd(m, k).

The classifying map for 2°€g;7 will be viewed as the following composite.

A L (A x A (A x Ay 25 BOy s x BOyerr — BOy
j (2.3)
Here d is a cellular map homotopic to the diagonal map, X ™ denotes the n-skeleton of
X, and f classifies 2¢71¢. We write BO,, for BO(m) for later notational convenience.
As a first step, we would like to use (2.3) to deduce that

gd(2°, k) < max{gd(2°",7) + gd(2* "k — ) : 0 < j < k}.
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In order to make this deduction, we need to know that the liftings of the various
26*1§8j+7 to various BO,, have been made compatibly.

Definition 2.4. If 0 is a vector bundle over a filtered space Xy C --- C Xy, we say
that
gd(0]X;) < d; compatibly fori <k

if there is a commutative diagram

Xy — X Xy
BOdo — BOd1 BOdk — BOdim(@)

where the map Xj, — BOgim) classifies 0, and the horizontal maps are the usual

mclusions.

fXyoC---CXpand Yy C--- CY, are filtered spaces, we define, for 0 < i < k,
(X xY); = LZJ X; x Y.
=0
Then (X xY)y C -+ C (X x Y); is clearly a filtered space. We will prove the
following general result in Section 3.
Proposition 2.5. Suppose gd(0|X;) < d; compatibly for i < k and gd(n|Y;) < d.
compatibly for i < k. For 0 < j < k, let e; = max(d; + d;_l- :0 <1< ). Then
gd(0xn|(X xY);) < e; compatibly for j < k. Moreover, if X =Y and 0 =, then the
maps (X x X); LBOEJ, can be chosen to satisfy foT = f, where T : X x X — X x X

interchanges factors.

We will begin an induction using some known compatible bounds for gd(16, ).
Proposition 2.5 will, after restriction under the diagonal map, allow us to prove
gd((>-2%),) < max{> gd(2°&,,) : Y m; = n}. These bounds are not yet strong
enough to yield new immersion results. Next, we must improve the bounds by taking

advantage of paired obstructions. The following result will be proved in Section 3.

Proposition 2.6. Let BO,[p| denote the pullback of BO,, and the (p — 1)-connected
cover BO[p] over BO, and let s = min(p +2m — 1,4m — 1).
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(1) There are equivalences ¢ and cy such that the following diagram
commutes.

C/

BOsy[p]®) —"—  (BOonpl/BOspr[p))® —— S

pzl pgi {
BOsia[p]® —2— (BOsusi[p)/BOsm-i[p)®) —2— LPIm .

Preparatory to the next two parts, we expand this diagram as
follows, with ¢; = ¢, o q; and (X, A) a finite CW pair.

A L) BOQm,1 [p] (s)

| ]
X BOon[p]®) —2—  §7m
BOopi1[p]®) —*— TP ..

(2) Suppose dim(X) < s, and we are given X ER BOy,,[p]®) such
that foj = p1o fi and ¢, o f factors as X — X/A L 52
with [g] divisible by 2 in [X/A, S*™].} Then pyo f lifts to a map
X i>B02m_1[p](3) whose restriction to A equals f.

(3) Suppose, on the other hand, dim(X) < s, and we are given
x L BOsyi1[p]® such that f' o j = pyopio fi and cy 0 f'
factors as X — X/A g, YPEm | with [¢'] divisible by 2 in
[ X/A, SPI™ || Then f' is homotopic rel A to a map which
lifts to BOop[p]™).

In Section 4, we will implement Propositions 2.5 and 2.6 to prove that the last part
of the following important result follows from the first five parts, while in Section 5,
we will establish the first five parts. Here and throughout, v(—) denotes the exponent
of 2 in an integer.

Theorem 2.7. There is a function g(e, k) defined for e > 4 and k > 0 satisfying:

(1) If k > 2°73, then g(e, k) = 2°.

INote that [X/A,S%™"] is in the stable range, from which it gets its group
structure.
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(2) If e > 4k + 2, then g(e, k) = 0, while if e < 4k + 2 and k > 1,
then g(e, k) > 4k + 4.

(3) If 0 < ¢ <k, then g(e, k) > gle —1,0) + gle = 1,k —¢) — 1.

(4) If [(e + 1)/4] <20 < 273, then g(e,20) > 2g(e — 1,0) + 1.

(5) Either g(e, k) = gle,k — 1) or g(e, k) > gle,k — 1) + 2.

(6) gd(2¢ k) < g(e, k) compatibly for all k.
By restricting the lifting of P3+7 to P8+ for 0 < i < 6, we may use this result to
obtain compatible liftings of 2¢¢,, for all n.

The function g will be semiexplicitly defined in (5.2), 5.3, and 5.4. In Table 2.8, we
list its values for small values of the parameters. We prefer not to tabulate the values
g(e, k) = 2¢ when k > 2¢73. The numbers in boldface will be given special attention
at the beginning of Section 5.

Table 2.8. Values of g(e, k) when e < 15 and k < 16.
k

0 16 23 29 38 45 56 61 70 77 &7 93 102 109 121
0 0 22 28 37 44 55 60 69 76 8 92 101 108 120

12 3 4 5 6 7 & 9 10 11 12 13 14 15 16
417 16
516 15 22 32
e 6|5 14 21 31 37 46 53 64
710 13 20 30 36 45 52 63 68 77 84 94 100 109 116 128
810 12 19 29 35 44 51 62 67 76 83 93 99 108 115 127
910 12 18 28 34 43 50 61 66 75 82 92 98 107 114 126
100 12 17 27 33 42 49 60 65 74 81 91 97 106 113 125
1110 0 16 26 32 41 48 59 64 73 8 90 96 105 112 124
1210 0 16 25 31 40 47 58 63 72 79 89 95 104 111 123
13/0 0 16 24 30 39 46 57 62 71 78 8 94 103 110 122
0
0

15

To obtain the best results, we must insert one more bit of sectioning information—
linear vector fields on S™ yield vector fields on P™ and hence sections of (n + 1), =
T(P") @ e. Let

plda +b) =8a +2"if 0 < b < 3.

Eckmann ([4]) used the Radon-Hurwitz theorem to show that S™ has p(v(n+1)) —1
linearly independent linear fields of tangent vectors and hence (n+1)¢&, has p(v(n+1))

linearly independent sections. We obtain the following well-known result.
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Proposition 2.9. Fore > 2, gd(2°¢_1) < 2° — p(e).
If we wish to incorporate these into any subsequent induction argument, it is nec-

essary that the liftings be compatible with the liftings already obtained on the lower

skeleta. All we can easily assert is the following.

Proposition 2.10. Let
0 if n < ple)
den = 9(e; [g])  if ple) <n <2°—ple)
2¢ —p(e) if2°—p(e) <m < 2°
Then gd(2¢°€,) < d., compatibly for n < 2°.

Proof. Since both composites stabilize to 2°¢, the obstruction to commutativity of

2¢—p(e)—1
P BOde,Qe—p(e)—l

J |

PT=r©) ———  BOse_y
is a map P2 ~P®~1 — Vi), which is trivial for dimensional reasons. Here V, is the
fiber of BO,, — BO, and is (n — 1)-connected. The top map in this diagram comes
from 2.7.(6), while the bottom map comes from 2.9. W

Remark 2.11. If we could assert compatibility of the Eckmann liftings with those
of Theorem 2.7.(6) on a larger skeleton, we might improve our immersion result to

the extent mentioned in Section 1.

Remark 2.12. If one inserts the Eckmann lifting earlier in the inductive determina-
tion of gd(2°¢,,), one obtains weaker lifting results than those of 2.7.(6). For example,
one can replace ¢g(6,7) by 52 = 64 — p(6), but then, by 2.10, one must also use
g(6,6) = 52. If these values are maintained, then values of ¢(7, k) will have to be
increased for k =6 and 8 < k < 14.

Finally, in Section 6, we apply the basic induction argument, Proposition 2.5, and
the results for gd(2¢¢) in Proposition 2.10 to prove the following result by induction
on t.

Proposition 2.13. Fore > 7 andt > 1, gd((2°+2° -+ - +2°7) & ) < 2°—e—T.

This clearly implies Theorem 2.2, and hence the immersion theorem 1.1.
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3. PROOF OF GENERAL LIFTING RESULTS

In this section, we prove Propositions 2.5 and 2.6. For the first one, we find it more

convenient to work with sections rather than geometric dimension.

Theorem 3.1. Let Xg C --- C Xj and Yy C --- C Y} be filtered spaces, and let 6
(resp. m) be a vector bundle over Xy, (resp. Yy ). Suppose given mq (resp. ng) sections
of 0| Xy, (resp. n|Yx), of which the first m; (resp. n;) are linearly independent (1.i.) on
X; (resp. Y;) for 0 <i<k. Let

p; =min(m; +n,_; : 0 <i<j).
Let '
j
Wi =X x Y

i=0
Then there are py sections of 0 xn on Wy, of which the first p; are linearly independent

on W for 0 < j < k. Moreover, if { +1i > j and my + n; > p;, then the first p;
sections are l.i. on X, X Y;.
Note that we have mg > -+ > my, ng > --- > ng, and pg > -+ > pg.

The following result will be used in the final step of the proof of Theorem 3.1.

Lemma 3.2. Suppose 0 is an n-dimensional trivial vector bundle over a space X
with 1. sections ty,... ,t,. Suppose si,...,s, are l.i. sections of 6, each of which
1s a linear combination with constant coefficients of the t;. Then there is a set

S15.-. 380, 8100, ,5, of linearly independent sections of 0.

Proof. Because of the constant-coefficient assumption, this is just a consequence of
the result for vector spaces, that a basis for a subspace can be extended to a basis for

the whole space. W

Note that the assumption about constant coefficients was required. For example,

the section s(z) = (x, ) of S? x R? cannot be extended to a set of three L.i. sections.

Proof of Theorem 3.1. Let ry,... ,ry,, be the given sections of 0| Xy, and s1,... , sy,
the given sections of 7|Y;. These are considered as sections of # x 1 by using 0 on
the other component. Clearly {ry,... ,7my, S1,--- ,Sn,} 1S @ set of py sections on Wy,
which is linearly independent on W,. The proof will proceed by finding p; linear

combinations, always with constant coefficients, of these sections which are 1.i. on
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W1, then py linear combinations of these new sections which are li. on Ws, etc.,
until going into the last stage we have py_; sections which are 1.i. on Wj_;, and we
find p, linear combinations of them which are Li. on Wj. Now we apply the lemma
repeatedly, starting with the last p; sections. At the first step, we extend this set
to a set of pr_; sections Li. on Wj_;, and continue until going into the last stage we
have p; sections which are combinations of the original py sections and satisfy the
conclusion of the theorem for 1 <1 < k. We apply the lemma one last time to extend
the set of p; sections to the desired set of py sections.

Here is an explicit algorithm for the sections described in the first half of the
preceding paragraph. We may assume without loss of generality that my > ng.

For j from 0 to k,
(9)

)

e For i from 1 to p; —ng (resp. p; —my), let 7~§” =r; (resp. 57 =
s;). (Note that if ny > p;, then nothing happens at this step.)
e For ¢ from max(1,p; —ng+ 1) to min(my, p;), let both rgj) and

s;ilrl,i equal ri(jfl) + 5%111)4-

e Then the sections TZQ ) and sl(-j ) constructed in the two previous
steps give the sections which are Li. on W;. (Each section con-
structed in the second step can be counted as an r or an s, but

is only counted once.)

We must show that these have the required linear independence. Before doing

so, we illustrate with an example, computed by Maple. Let k = 4, [mq,... ,my| =
[11,6,4,1,0] and [ng,...,n4] = [10,8,3,2,0]. Then [po,...,ps] = [21,16,14,9,7].

The 16 sections l.i. on W are
T1y...,7¢, T7+810, Tg—l-Sg, Tg—l-Sg, 7’10+S7, 7’11+86, S5,... 4,51
The 14 sections 1.i. on W5 are
1, T2, T3, T4, 7’5+7’7+810, 7’6+7’8+89, T7+7’9+510+58, 7‘8+7’10+59+S7,

9 + 111 + Sg + Sg, T10 + S7 + S5, T11 + Sg + S4, S3, S2, S1.
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The 9 sections 1.i. on Wj3 are
1+ 76 + 78+ Sg, 7o+ 717+ 7T9+ S0+ Ss, T3+ 78+ 10 + S9 + S7,
T4 +T9 +T11+ 88+ Se, I's + 177+ 1o + S0 + 87+ S5, Te + 78 + T'11 + Sg + S6 + S4,
r7+7T9+ S10 + S8 + 83, 18+ 110 + S9 + S7 + S2, 19 + 711 + S8 + S + S1-
The 7 sections 1.i. on W, are
r1 413+ 1re + 2rg + 110 + 259 + 57,
ro + 14+ 17 + 2r9 + 711 + S10 + 258 + S,
T3+ 75+ 17 + 18 + 2110 + S10 + S9 + 287 + 85,
T4+ 16+ s+ 19+ 2r11 + Sg + Sg 4+ 256 + 4,
5 + 2r7 + 19 + 710 + 2810 + S8 + S7 + 55 + 3,
76 + 213 + 110 + 711 + 289 + S7 + S6 + 54 + S2,
7+ 2r9 + 711 + S10 + 288 + S + S3 + 1.

Now we continue with the proof. The property described in the first paragraph of
the proof, that the sections claimed to be l.i. on W; are linear combinations of those
on W;_y, is clear from their inductive definition.

Next we easily show that if ¢ > p; — ng, then

@ _ ) _
T =Sy = T + Z CeTe + Sp41—i + Z deSy
>4 >pi+1—i

with ¢, and d; integers. The point here is that the additional terms have subscript
greater than ¢ or p; + 1 —i. The proof is immediate from the inductive formula

rfj ) — rgj Dy sgjrll)_i
(G-1)

and the fact that p; < p;_;. Indeed, from r

(-1 :
and from sy " ; we obtain terms s>, 41— and r>p, —p; 44

we obtain terms r>; and s>, 114,

Finally we show that the asserted sections are L.i. on W;. Let x € X, x Y;_,. Note
that {ry(x),...,7m,(x)} is Li., as is {s1(x),... ,8n,_,(X)}, and that p; < my +n;_.

If we form a matrix with columns labeled

Tl -+ yTmgs Sngy - -+ 5 51,
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and rows which express the sections, ordered as

(4) ) ) (4) (3_3)

1o s Pinin(mospy)? Sh—mos - - - 3 ST s
in terms of the column labels, then, by the previous paragraph, the number of columns
is > (usually strictly greater than) the number of rows, the entry in position (i,%) is
1 for ¢ < min(myg, p;), and all entries to the left of these 1’s are 0. If ¢ > min(my, p;),
then all entries in the r-portion of row i are 0. Moreover an analogous statement is
true if the order of the rows and of the columns are both reversed. Thus there are
1’s on the diagonal running up from the lower right corner of the original matrix (for
min(ng, p;) positions) and 0’s to their right.

If a linear combination of our sections applied to x is 0, then the triangular form
of the matrix implies that the first m, coefficients are 0, while the triangular form
looking up from the lower right corner implies that the last n;_, coefficients are
0. Since p; < my + n;_¢, this implies that all coefficients are 0, hence the desired
independence.

The same argument works for the last statement of the proposition. For k satisfying
Jj <k < /{41, replace Wi by Wi U (X, x Y;) Then everything goes through as above.
|

Proof of Proposition 2.5. Let D = dim(f) and D’ = dim(n). Then d;, d;, e;, and
(X x Y); of Proposition 2.5 correspond to D — m;, D' —n;, D + D" — p;, and W; of
Theorem 3.1, respectively. The compatible gd bounds may be interpreted as vector
bundles 6; over X; of dimension d; and isomorphisms 0|X; ~ 6; & (D — d;) and
0;| X1~ 0;_1® (d; — d;_1). The trivial subbundles yield, for all i, D — d; 1.i. sections
of 8 on X, such that the restrictions of the sections on X; to X;_; are a subset of
the sections on X;_;. Each of the sections on X, has a largest X; for which it is one
of the given l.i. sections. By [1, 1.4.1], this section on X; can be extended over X}
(although probably not as part of a linearly independent set). Analogous statements
are true for sections of n|Y;.

By Theorem 3.1, there are D + D’ — eq Li. sections of 6 x n on Wy of which the
first D + D' — e; are Li. on W;. Taking orthogonal complements of the spans of the
sections yields the desired compatible bundles on W; of dimension e;, yielding the

first part of Proposition 2.5.
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For the second part, first note that in the algorithm in the proof of Theorem
3.1, if the r’s and s’s are equal, then the set of sections constructed on each W; is
invariant under the interchange map 7. Thus the same will be true of the orthogonal

complement of their span. W

Proof of Proposition 2.6. (1) Let Fy = S?™~! denote the fiber of BOg,,,_1[p] — BOay|p).

There is a relative Serre spectral sequence for
(CFy, F1) — (BO2w[p], BO2p-1(p]) — BOan[p]. (3.4)
The fibration Vs, — BOsy,[p] — BO|p] shows that the bottom class of BOa,,[p]

is in dimension min(p,2m). The spectral sequence of (3.4) shows that H,(S*") —
H.(BO2y,[p]/BOay,—1]p]) has cokernel beginning in dimension s+ 1, and so the map is
an s-equivalence. Thus the inclusion of the s-skeleton of BOay,[p]/BOay,—1[p] factors
through S?™ to yield the map ¢}, which is an equivalence.

The second map is obtained similarly. A map P | %5 BOgpi1[p]/BOom-1]p] is
obtained as the inclusion of a skeleton of C'Fy/Fy, where Fy = Vy,,11.9 is the fiber of
BOsgy,—1]p] — BOap11(p]. The relative Serre spectral sequence of

(CFy, Fy) = (BOamia[p], BOam1[p]) = BOamialp]  (3.5)

implies that coker(g.) begins in dimension s + 1, determined by Ho,,(CFy, F3) ®
Hin(p,2m+1)(BO2pm1[p]) and the first “product” class in Hym (X Vam41,2). The obtain-
ing of ¢, now follows exactly as for ¢}.

(2) Let Q := BOay11([p]/BOam-1[p] and E := fiber(BOgpm1]p] — Q). The com-
mutative diagram of fibrations

Vomy12 —— BOgy1[p] —— BOapmy1lp]

| | |

QQ — E —— BO2n41 [P]
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implies that the quotient E/BQOs,,_1[p] has the same connectivity as QQ/Vay11.2,
which is 1 less than that determined from (3.5); that is, E/BOa;,_1[p] is (s — 1)-
connected. Thus, since dim(X) < s, the vertical maps in

BOzm_l[p] —_— BOZm+1[p] - EPQQTZL—l

| | l

E —— BOgypyilp) — Q
are equivalences in the range relevant for maps from X, A, and X/A. Since the
bottom row is a fibration, we may consider the top row to be one, too, as far as X is
concerned.

Since ¢ is divisible by 2, and 27y, (X P2™ ;) = 0, we deduce that the composite
X/A L g2 Ly pim
represents the 0 element of [X/A, X PZ™ ]; i.e. the map is null-homotopic rel *. There

is a commutative diagram as below with the left sequence a cofiber sequence and the

right sequence a fiber sequence in the range of dim(X).

A I BOs, ]

SR

X # BOQm+1[p] (36)

| |
X/A 2, wpim

We have just seen that there is a basepoint-preserving homotopy
H:X/AxI—xpPim

from 7 o g to a constant map. There is a commutative diagram
Xx0UAXxIT — BOgm_H[p}

J J

xxI 2 x/Aax1 L, wpm

where the top map is f on X x0 and jso f; on each Ax{t}. By the Relative Homotopy
Lifting Property of a fibration, there exists a map H:XxI— BOs,+1[p] making
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both triangles commute. When ¢ = 1, it maps into BOs,,_1[p], since it projects to
the constant map at the basepoint of X PF™ .
(3) We use the fact that 2 Iypzm  factors as

Spm ool gem+l 1, gam LpPim
to deduce that the composite
X/A L pam | L, gomt

is null-homotopic since ¢’ is divisible by 2. An argument similar to the one in the
beginning of the proof of (2) shows that BOs,,[p] — BOagy,11[p] — S?™ T is a fibration
through dimension min(p + 2m,4m + 1) > s+ 1. Since dim(X) < s+ 1, the lifting
follows as in the proof of (2). However, we need dim(X) < s because the map ¢ in

(1) only exists on the s-skeleton. W

4. INDUCTIVE DETERMINATION OF A BOUND FOR gd(2¢ k)

In this section, we prove that part (6) of Theorem 2.7 follows from its first five
parts, together with initial values of g(e, k) given in Table 2.8 when k =1 or e = 4.

We begin by noting that 2.7.(6) is true for e = 4, since, by [7, 6.1] or Proposition 2.9,
gd(16&;15) < 7. The compatibility requirement is trivially satisfied because there are
only three values for the number of sections involved—mno sections, full sections (i.e.
trivial bundle), and one intermediate value. Indeed 16§, has no sections for n > 16,
16 sections for n < 8, and at least (and in fact exactly) 9 sections for 8 < n < 15.
These values, gd(16,0) = 0, gd(16,1) = 7, and gd(16,2) = 16 agree with the values
of g(e, k) tabulated in Table 2.8.

Let p = ple — 1]. Assume that we have obtained compatible liftings of 2~ &g, 7 to
BOgy(e—1,1)|p] for all k. For 0 < k < 2°72, define

gi1(e, k) := max{g(e—1,4)+g(e—1,k—i) : max(0,k—2°"*) <i < [k/2]}.
Note that by 2.7.(3),
gle, k) > qi(e, k) — 1. (4.1)
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Recall A, = P3+7 and let

k
(A X A)k = U Az X Ak,i.

i=0
Then by Proposition 2.5 there are compatible symmetric liftings ¢, of 2671¢ x 2¢71¢ on
(Ax A) to BOg, (e [p] for all k. We precede by compatible maps dj, : Ay — (AXx A)y,
cellular maps homotopic to the diagonal. The composites Ay Lrodi, BOy, (.1 [p] are
compatible liftings of 2°£g;. 7 for all k.

By decreasing induction on k starting with & = 273, we will construct compatible
factorizations through BO,.r)[p] of the maps € odj,. Assume inductively that, for all
J > k, compatible factorizations, up to homotopy rel Ay, of ¢; od; through BOgy ;) [p]
have been attained. If g(e, k) > gi1(e, k), then no factorization of ¢4 o dj is required,
and so our induction on k is extended. So we may assume g(e, k) = g1(e, k) — 1.

Let h = [k/2]. Let k' be the largest integer less than k such g(e, k') < g(e, k). By

2.7.(5), g(e, k') < g(e, k) — 1, and hence by (4.1)
gi(e, k') < gle k) — 1. (4.2)

By (4.2), 2.7.(4), and the last part of Proposition 3.1 (which is required for compati-
bility of the lifts of (A x A) and Ay, x Ap, to BOgy(ex)—1), we have the commutative

diagram below, similar to (3.6).

Ay —2 (A x A)w UAp x Ay ——— BOg(esy-1]p)®*D

| | BOgy(e o] 7

Ay, d (A x A)y e Bog(e,k)+1[p](8k+7)
AnfAw —T (Ax AN/ (A x A U A, x Ay) —— ¢,
where €' = S9EHHLf g(e, k) is odd, and C' = Epgg((;f))fl if g(e, k) is even. The

maps labeled d are cellular maps homotopic to the diagonal. The map ¢ is obtained
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similarly to the first paragraph of the proof of 2.6, using 2.7.(2)? to conclude that
gle, k) > 4k + 4, provided k > 1. We will deal with the case k = 1 at the end of this
proof.

The quotient (A x A)i/(An x Ap) equals B V T'(B), where T reverses the order
of the factors, and B is the union of all cells ¢! x ¢/ with i < j. By the symmetry
property of ¢, {|T(B) = (¢|B)oT. Since T od ~ d, we conclude that £ od is divisible
by 2. Indeed, with rp denoting the retraction onto B,

[Cod) =[((|B)orgod +|[(l|T(B))orrmod
and we have
[((T(B)) orppyod| =[((|T(B))oT orgod = [({|B)orgod).

Thus, by Proposition 2.6, ¢ o d; is homotopic rel A, to a map which lifts to
BOy(ery[p]. Note that the lifting into BOgy(c x)—1]p] was not needed if g(e, k) is odd.
Hence, once we handle the case £ = 1 postponed above, we will have extended our
inductive lifting hypothesis, and so will have proved that there are compatible liftings
of Ay to BOy(eplp] for all k. This extends the induction on e and proves Theorem
2.7.(6), assuming the first five parts of 2.7.

The case k = 1 was postponed above. We consider it here. The subtlety is that we
are asserting a lifting outside the stable range. We consider primarily the case e = 5.

The case e = 4, discussed at the beginning of the section, has yielded a commutative

diagram
P7 — 300[9]

| l

P15 I BO7[9]

| l

P23 —— B016[9]
The maps factor through maps on P33, Py, and Py = *. The map Py° 1, BO; 9] is
obtained (see [8, 3.2]) as a compression of

P 158 2 BO[9),

2By 2.7.(2), if g(e, k) < 4k + 4, then e > 4k + 2, and hence gd(2°¢s17) = 0, in
which case we are done.
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which lifts to BO7[9] by [3, 2.1]. Note that we could have chosen any lifting of the
stable map 16¢ to BO7, and we chose this one. By [3, 2.1], [2f] lifts to BOg, and [4f]
to BO5

Proposition 2.5 yields a commutative diagram
PSS (P x P{)09 ——  BO;[9]
d2

P —=— (P§® x PP*)®) —— BOy[9)

Pyt~ (PP x PP —— BOy[)

Py~ (P x F§)®) —— BOgl9],
where the horizontal maps are liftings of 16§ x 16£, and d; are cellular maps homo-

topic to the diagonal. Proposition 2.6 then allows an improvement to a commutative

diagram
Py® —— Py V P> —— BO;[9]
P923 — BOq5[9]
P! — BO9,[9]
Py — BO3,[9].

We could not use 2.6 to lift the top map to BOg because the dimensional conditions
were not satisfied. However, the class of this map is 2 times the map f described
in the preceding paragraph, and hence, by the argument there, it lifts to BOg, as

desired. A very similar argument works when e = 6 to lift to BOs.
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5. THE FUNCTION g(e, k)

In this section, we define the function g(e, k) which has been used in the previous
sections, and prove the first five parts of Theorem 2.7, its numerical properties which
were already used to prove 2.7.(6), its important geometrical property.

Let lg(k) = [log,(k)]. Except for an irregularity when k& = 1, ¢ is determined by
g(k,1g(k) 4+ 4), which we will denote by f(k). For k < 16, this function f(k) of one
variable has the values indicated in boldface in Table 2.8. The companion equations

relating f and g are

f(k) = g(lg(k) + 4, k), (5.1)
and, if £ > 1,
2¢ e <lg(k)+3
gle, k) = {max(4k + 4, f(k) —e+1g(k) +4) lg(k)+4<e<4k+2
0 e > 4k + 2. (5.2)

For k = 1, the values of g are as in Table 2.8. The reason for the irregularity when
k =1 is that in the previous section we used special considerations to get liftings of
bundles over P'® beyond the stable range. It was important to do this to get a good
start on the induction.

The formula for f is too complicated to write explicitly, largely due to requirement

2.7.(5). It utilizes, among other things, the following auxiliary function.
Definition 5.3.
d(n) = max(v(n) — 1, min(2,4d'(n))),
where
§'(n) =max{v(n —d) —4d+3: 2<d<n}.
Recall that v(—) denotes the exponent of 2. For example, 6(n) =v(n) —1ifn=0
mod 8, while

1 ifv(n—2)=6
d(n)=<2 ifvin—2)>7
0 ifv(n—3)=9

are the only cases with n < 3!9 + 3 for which §(n) # v(n) — 1.
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A first approximation to f is given by
fun) = 8n — 1g(n) + 8(n).
We explain now the rationale behind the definition of 6. The (v(n)—1)-part is present
just to make the basic induction work and to agree with some initial values. If it were
not for two delicate matters, we could just define f(n) = 8n —lg(n) + v(n) — 1. The
first of these delicate matters is the stability requirement in 2.7.(2), illustrated by
the last two 12’s in column 2 and the last three 16’s in column 3 of Table 2.8. The
smallest n for which d(n) # v(n) — 1 is n = 66; 6(66) = 1, using d = 2 in 5.3. The

need for this is seen in
522+§(66) = 8-66—6+40(66) = f(66) = ¢(10,66) > ¢g(9,64)+¢9(9,2)—1 = 512+12—1.

Note from Table 2.8 that the 12 = ¢(9,2) is 1 greater than it would have been were
it not for the stability considerations. This “1” is intimately related to 6(66) = 1.

The other delicate matter is that 2.7.(5) requires f(n) # f(n — 1) + 1. This
is the cause of most of the complications. Recall that the reason that this is so
important goes back to Proposition 2.6.(3), which requires that if you want to utilize
paired obstructions to lift from 2m + 1 to 2m, compatibly with a given lifting on a
subcomplex, then that lifting must be to 2m — 1.

Now we give the definition of f.

Definition 5.4. Forn > 1, let f{(n) = 8n —lg(n) + d(n) and

fo(n) = max{ fy(m) : m < n}.
Note that fy is an increasing function of n. Define s(n) and f(n) := fo(n) + s(n)
inductively by f(0) =0 and forn > 1
1 1 n)=f(n—1)x1
s(n) = {O (f;i]:;("wise. It |

Note that the — and + parts of + are present for different reasons. The — is
present to make f increasing, while the + occurs to prevent f(n)— f(n—1) = 1. For
example, if f(n —2) = fo(n —2) = A, fo(n —1) = A+ 1, and fo(n) = A+ 1, then
s(n — 1) =1 for the latter reason, yielding f(n —1) = A+ 2, and so s(n) = 1 for the

former reason.
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Then f is an increasing function such that f(n) — f(n — 1) # 1. Before proving
that f (actually the associated g) satisfies the required properties of 2.7, we give a
few examples.

Example 5.5. Let u always denote an odd positive integer, and A an arbitrary pos-
itive integer.

e s(n)=0ifn <2"+1, because fj(n) — fi(n—1) > 8—v(n—1).

o s(u-2"+1) =1 for most odd integers u. When u =1, this is

due to
—15 e=-1
-1 =0
f@ +e =2+ )
0 e=1
9 €= 2.
However, if e > 2% + 1, then s(2° + 27 + 1) = 0 due to §(2° +
2T4+1) > —1.

o Ifk > 2 and my = max(v(k) —1,2), then for most odd integers
u, s(u- 28K 4 k) = 1. When k = 2, this is due to

—26 €= -1
-1 €=0
fo@¥4+e) =22+ 11 e=1
0 €e=2
5) €=3.

o 5(u-22"t1 4284 1) =1 for most u, using d = 28 +1 in &(n) in
5.8. Similarly, s(22"7242941) = 1 and s(A-227"+342104.1) =
1.
. 3(2220“6 +27+€) =1 for 0 < e <2, since
-1 0<t<2l7
f0<2220+16 1) = 920419 4 [ N7 <t <27 1]
2 t=2742
o Similarly, s(22°18 +29 4 ¢) =1 for 0 < e < 1.
Now we proceed to the proof of the relevant portions of 2.7. The reader can

easily check that the formulas (5.2) and 5.4 agree with Table 2.8 in its limited range.
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Properties (1) and (2) of 2.7 are immediate from (5.2). To establish property (5), we
first note that f(n) # f(n — 1) + 1 by Definition 5.4. This and (5.2) imply 2.7.(5)
with the only minor worry being about the truncation of g(e, k) at 4k + 4, but this
only occurs when v(k) < 4, and from this it follows easily that g(e,k+1) > g(e, k)+1
in these cases. Observation of columns 2, 3, and 4 of Table 2.8 should convince the
reader that this is true.

We now proceed to prove 2.7.(3). We first prove that it is true using fy. First note
that we need not worry that f; is a max, for the sum of the parameters which yield
the max for the terms of the RHS of 2.7.(3) will be admissible for the evaluation of
the LHS. It suffices to prove 2.7.(3) when e = lg(k) + 4, in which case it reduces to
folk) = fo(0) = (Ig(k) + 3) +1g(€) + 4 + fo(k — €) — (1g(k) +3) +1g(k — ) + 4 — 1,

(5.6)
unless g(e — 1,¢) = 4¢ + 4 due to truncation. We will deal with this possibility later.
Using 5.4, (5.6) reduces to

d(k)+1g(k) > 6(4) +0(k—0)+ 1, (5.7)
provided 2 < /¢ < k — 2.

The case ¢ = 1 is easily handled. Then g(lg(k) + 3, ¢), which occurs in the simpli-
fication to (5.6), is 0 unless lg(k) < 3, and 2.7.(3) is easily verified in these cases.

Returning to the proof of (5.7), write kK = 2% + m with 0 < m < 2% Cases with
a < 6 are easily checked directly, and so we assume a > 7. Assume without loss of
generality that v(¢) > v(k —{). If v(¢) < 3, then (5.7) is clearly satisfied since its
LHS is > 6, while its RHS is < 5.

Now we may assume v(¢) > 3, and hence §(¢) = v(¢) — 1. If Kk =0 mod 8, then
v(k) > v(k — ), and so (5.7) follows from a > v(f). Hence we may assume k % 0
mod 8. Then v(k — ) = v(k) and 6(k — ¢) — §(k) <2 — (—1) = 3, so that the only
way (5.7) might fail is if v(¢) > a — 2; i.e., if £ =29, 2071 2072 3.2972 or possibly
(depending on how large m is) 3-2%71 5.2%72 and 7-2%2. One easily verifies that
(5.7) holds in these cases. For example, if £ = 2% then (5.7) reduces to showing
d(2* +m) > 6(m). This is true because any value of d in 5.3 that causes 6(m) to be
greater than its minimal value will also cause the same for (2% +m). If £ = 2971,
then (5.7) reduces to §(2* +m) > §(2** +m) — 1, which is true with 1 to spare.
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We complete our proof of the fy-version of 2.7.(3) by considering what happens in
the postponed case in which g(e — 1,¢) = 4¢ + 4 due to truncation. The definition of
the function ¢ has been formulated to handle this case. We begin by illustrating with
the case ¢ = 3, e = 15. Note that g(14,3) is the lowest 16 in the & = 3 column of
Table 2.8, and is 3 larger than it would have been if the values of g(e, 3) were allowed
to decrease below 16. In the context of (5.7), that would add 3 to the RHS. Since
e =1g(k) + 4 in (5.6), we have lg(k) = 11. So k =21 +¢, 0 <t < 2! and we need

to verify

S(2M +1)+11>06(3) +6(2" +t —3) + 4. (5.8)
Since 0(3) = —1, (5.8) reduces to
SN +1)+8>6(2" +t-3). (5.9)

The only way this could fail is if v(2!! +¢ — 3) > 9. In Table 5.10, we tabulate the
values of both sides of (5.9) for these values of ¢, and see that (5.9) holds in each.
The definition of ¢ has been formulated so that it will always work this way.

Table 5.10. Verification of (5.9).
t [ o@M+t)+8 (2" +t—-23)

3 2+8 10
29 +3 0+38 8
210 4+ 3 1+8 9
3-2943 0+8 8

The general case of 2.7.(3) when truncation occurs is extremely similar. Let ¢ > 1
be arbitrary.® The worst case occurs when e = 4¢ + 3, because then g(e — 1,¢) is the
last nonzero entry in its column. The amount of truncation is max(2 — §(¢),0). This
is achieved from (5.2) and 5.4 as

L+4—(f(0)— (40+2)+1g(0)+4) = 80+2— (80 —1g(£)+4(£)) —1g(0).

Since e = lg(k) +4 in (5.6), we have k = 241+t with 0 < t < 2*~1. The analogue
of (5.7), which we must establish, is

(2" P t) 440 —1>5(0) + 02Tt —0) + 14 (2-6(0)),

3There is no truncation when ¢ = 1.
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which reduces to
S22V t) 40> 524 4t — 1) + 4. (5.11)
This inequality is easily verified, using the definition of ¢, as follows:
LHS>7>RHS if v(t—¢)<3
LHS>4¢—1>RHS if 3<v(t—0)<4(—-3
LHS > v(t—¥¢)+3>RHS if 44 -3<wv(t—¥¢) <4(—1.
Note that v(t — £) can be no larger than 4¢ — 1. The first inequality in the third line

follows from 5.3.

Having now verified 2.7.(3) when f; is used, we next show that it follows that this
is also valid when f is used. Because 0 < f — fy < 1, the principal worry is to show
that if equality was attained in (5.7) or (5.11) using fo, then it cannot happen that
s = 1 on the RHS but not on the LHS, causing the inequality to fail.* Equality occurs
in (5.7) using fp only when £k = 2%+ m, 0 < m < 2% and ¢ = 2*. Thus we need to
show here that

(6+ 8)(2% +m) > (6 + 5)(m). (5.12)

Some typical occurrences of s(n) = 1 were given in Example 5.5 and a complete
description of these is given in Lemma 6.7. It follows from this that the only way
that we can have s(m) = 1 while s(2* + m) = 0 is if 6(2* +m) > d(m), as occurred
for m = 2"+ 1 and @ > 2% + 1 in the second bullet in 5.5. In such cases, (5.12) is
necessarily satisfied because of the increase in 4. In the notation of Lemma 6.7, if
m = Ap + -+ + A; has s(m) = 1, then 2* + m with 2* > m can be written with
Ap replaced by 2% + Ay, with v(—) unchanged. Then the condition which caused
s(m) = 1 will also cause s(2% +m) = 1 unless §(2* + m) # §(m). However, adding a
large 2-power such as 2% cannot decrease 6. Thus §(2* +m) > §(m) and hence (5.12)
is satisfied.

The only cases of equality in (5.11) occur when v(t —¢) > 4¢ — 4. Thus the (6 + s)-
version of (5.11) could fail only if (24~ +u2¢) = 1 with e > 4/ —4 (and u2°¢ < 2%-1).

But Lemma 6.7 shows that s(n) = 1 only when n has at least one long string of 0’s

4The possibility of two cases of s = 1 on the RHS of (5.7) when the inequality
was satisfied with 1 to spare can be eliminated similarly.
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in its binary expansion, which is not the case for n = 2%~ +42¢ with e < 4¢ — 4 and
u2¢ < 241 This completes the proof of 2.7.(3).

Next we prove 2.7.(4). Note that it is similar to 2.7.(3), except it is stronger by
2. Note also from Table 2.8 that the claim is false when 2¢ = 273, for we have
g(e,2¢73) = 2¢ = 2g(e — 1,2°7%). The exclusion on the other side of 2.7.(3), when
[((e+1)/4] > 2¢, is because both g(e,2¢) = 0 and g(e—1,¢) = 0 in this case. Similarly

to (5.7), the claim reduces to

(0 +5)(20) +1g(20) > 2(5 + 5)(£) + 3. (5.13)
Note that for ¢ < 28,
£ o6 7 7
(6 + 5)(0) = v(0) 1f€-?+2,2 +1,0r 27 +2
v(f) —1 otherwise.

For these three special values of ¢, (5.13) is easily verified, while if (§+s)(¢) = v(¢)—1,
then (5.13) reduces to lg(¢) > v(¢), which is clearly true. Thus (5.13) is true for ¢ < 25,
The reason that this analysis didn’t catch the failure of 2.7.(4) to hold when 2¢ = 2¢73
is that the analysis deals with f(—), and the values g(e,2°73) = 2¢ sit above the f-
values in Table 2.8; for example, f(8) = ¢(7,8) = 63, not the 64 which sits above it
in the table.

If ¢ > 28 so that 1g(2¢) > 9, and §(¢) < 3, then (5.13) is certainly true. Here we
use 5.5 or 6.7 to see that s cannot play a significant role here; the second value of n
with s(n) > 0is s(2'® +2) = 1, for which lg(n) will certainly make (5.13) hold. Thus,
we may assume ¢ =0 mod 8 and then 6(¢) = v(¢) — 1, and hence (5.13) reduces to

1g(0) + 5(20) > v(0) + 2s(0). (5.14)

Note that
0 (=2
lg() —v(l) =<1 (=241
> 2 otherwise.
Since s(2¢) = 0, we deduce that (5.14) holds.

6. INDUCTIVE DETERMINATION OF A BOUND FOR GD OF NORMAL BUNDLE

In this section, we prove the following result, of which Proposition 2.13 is an im-

mediate consequence.
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Theorem 6.1. Let e > 7 and

0 if n < p(e)
d = 9(67 [%D ifp(e) <n <20 - p(e)
" |max(g(e, [5]) = 1,2° = ple)) if2°—ple) <n <209
R if2e—8<mn<2°—1.

Fort>1, gd((2° 42" + .- +2°T)¢,) < d.,, compatibly for n < 2°.
Remark 6.2. The all-important 2¢ — e — 7 arises from the bound g(e,2°7% — 1) +
gle+ 1,271 =2¢7t —e — 542671 — 2 for gd((2° + 2¢71)&ge_y).
Example 6.3. We illustrate the argument when e = 7. Here we have

100 if 104 <n < 111

d,={112 if112<n <119

114 if 120 < n < 127.
By Proposition 2.10, we can replace the 109 and 116 in the (e = 7)-row of Table 2.8
by 112 and 112. Call the values in this modified row ¢'(7,k). These are compatible
bounds for gd(27, k). Apply Propositions 2.5 and 2.6 to this to get a modified (e = 8)-
row, for £ < 15, with the 108 and 115 replaced by 111 and 114. Call the values in
this new row ¢'(8, k). The 111 for ¢/(8,14) is determined by ¢'(7,14) 4+ ¢'(7,0) — 1 =
112 + 0 — 1, while the 114 for ¢'(8,15) is determined by ¢'(7,7) + ¢'(7,8) — 1 =
52 4+ 63 — 1. Now apply Proposition 2.5 to ¢'(7,k) and ¢/'(8, k) to obtain compatible
bounds for gd((27 + 2%)&,), n < 127. The value df,,y = 112 is determined by
g'(7,14) +4¢'(8,0) = 112+ 0, while d; ;,, = 114 is determined by ¢'(7,0) + ¢'(8,15) =
0+ 114 or ¢'(7,7) + ¢'(8,8) = 52 + 62. Applying Proposition 2.5 to the d, bounds
for gd((27 4 2%)¢,) and the g(9, k) bounds for gd(2°¢s,17) maintains the d;, bound
for gd((27 + 2% + 29)¢,,), and the addition of larger 2°¢ is handled in the same way.

Proof of Theorem 6.1. The above example when e = 7 was slightly simpler than the
general situation because p(7) = 0 mod 8. Each value g(e, k) gives a bound for
gd(2¢¢;) for 8k < i < 8k +7. If p(e) # 0 mod 8, then the skip of d; ,, at n = 2° — p(e)
occurs in the middle of one of these ranges, forcing a refinement of the filtering of
P? =1 Tt becomes convenient to filter it using all skeleta P'.

The proof will proceed in five steps.

(1) Use Proposition 2.10 for gd(2¢,,) for n < 2°.



IMMERSIONS OF RP2?°~! 25

(2) Use (1) and Propositions 2.5 and 2.6 to prove

0 n < ple+1)
ed(2¢71¢,) < gle+1,[5]) ple+1) <n<2¢—pe)
YT | max(gle +1,[5]),2° = ple) = 1) 2°—p(e) <n <279
20 —e— 17 20—-8<n<2¢-1

compatibly for n < 2°.
(3) Use (1) and (2) and Proposition 2.5 to prove

gd((2° +21)¢,) < d

compatibly for n < 2°.

(4) By induction on ¢, using (2) to get started and Propositions
2.5 and 2.6, show gd(2°7¢,) has the same bound as in (2),
compatibly for n < 2°. We can actually do better than this,
but this is all we need.

(5) By induction on ¢, using (3) to get started and then also (4) and
2.5, show that gd((2° +2°T" 4 --- +2°%")¢,) < d, ,, compatibly
for n < 2°, completing the proof of the theorem.

Step (1) is immediate, and steps (4) and (5) are similar to and easier than steps
(2) and (3), respectively. We now prove step (2).

For n < 2° — p(e), this is Theorem 2.7.(6), which has already been proven. For
2¢ — ple) <n < 2°—9, we have gd(2°71¢,) < max{de; +depni —1: 0<i<n}. We
must show that each d.; +dc,—; —1is < either g(e+1,[§]) or 2°—p(e) — 1. For those
i such that d.; = 2° — p(e), we have d.,—; = 0, and so the desired result is true in
these cases. For other 4, the numbers d.; — d. ,—; — 1 are among those which yielded
gd(2°%1¢,) < g(e +1,[%]) in 2.7.(6), yielding the claim in these cases. Finally, using
(1), 2.5, and 2.6,

gd (277 & 1) < max{2°—p(e)—1, g(e, () +g(e, 2P —1—0)—1: [A2] < € < 27312},
We have
gle,0) +g(e,2°7 =1 —£) = 2° =2+ (3 +5)(0) + (6 +5)(2° = 1 = 1),

which for 2 < ¢ < 273 —3 and e > 7 has maximum value of 2¢ — e — 6 when ¢ = 27,
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We will first prove (3) using fo instead of f, and then explain why it still holds

when f is used. We wish to prove

des +gd(2°1, ) < d. (6.4)

where gd(2¢72¢,_;) refers to the bound given in (2).

If n < 2° — p(e), there are two cases depending on whether or not g(e + 1, [§]) =
g(e, [g]). This equality occurs only for the bottom few nonzero elements in columns
in (the extension of) Table 2.8 for which the column number is not divisible by 8. If
e +1, [2]) < gles[2]), then

de; + éa(QeJrlfn—i)

IN N
o w
~—~ o~
o
=
+
Q
—~
o
g
| |
=

gle+1L[5N) +1 (6.5)
= gle,[§]) = d -
Here we used 2.7.(3) at the middle step. If, on the other hand, g(e+1,[g]) = g(e, [§]),
then g(e,j) = g(e +1,j) = 0 for all j < [g]. (See Table 2.8.) Thus in this case
dei 4+ gd(2¢71€,) < gle, [3]), since at least one term is 0.
Now assume 2° — p(e) < n < 2°—9. (a) If 2° — p(e) > g(e,[g]), then dc; +
gd(2¢71€,_,) < gle, (%)) as in the previous paragraph, and this is < 2° — p(e), as

claimed. (b) The case in which 2° — p(e) < g(e, [§]) requires a little more argument.
If g(e+1, [%5*]) < g(e, [%5%]), then the desired inequality follows similarly to (6.5). The
first < there becomes <, and so we deduce dq; + gd(2°71€,_;) < g(e, ) —1=4d,,.
If, on the other hand, g(e +1,[%5%]) = g(e, [%5%]), then g(e, k) with k = [%*] must be
one of the equal bottom nonzero entries in a column k > 2, with e = 4k — 1 + r with

v(k) <r <2. Then (6.4) becomes

4k +4<g(e, 2% —t)—1—g(e, 2% —t — k) (6.6)
with [%] = 2°7%—¢. The hypothesis 2°—p(e) < g(e, 2°7®—t) implies 8t —v(t) < e+5 <
4k + 6. This implies v(t + k) < lg(2k) and so the RHS of (6.6) is > 8k — 1 — Ig(2k).
Since 4k +4 < 8k — 1 — Ig(2k) for k > 2, (6.6) is valid, hence so is (6.4) in this case.

Note that the inequalities in this paragraph are quite crude, but are all that we need

here.
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Finally, suppose 2¢ — 8 <n < 2¢ — 1. We have
oo+ gd(2 a0 1) =2 — e~ T.

Cases in which d,; = 2¢ — p(e) have gd(2¢1€,_;) = 0, and, since 2¢— p(e) < 2°—e—7,
(6.4) is valid in these cases. In other cases, the LHS of (6.4) equals

gle, ) +gle+1,2°3 —1—4)=2°—2e — 1+ 86(0) +6(2°% -1 -1).

The largest value of this occurs when ¢ = 2% and is 2¢ — e — 7.

What remains is to show that incorporating positive values of s cannot affect va-
lidity of the above argument. We saw in the paragraph containing (5.12) that 2.7.(3),
which is the primary tool throughout this proof, is valid with s incorporated. The
above argument also required that f(2¢73—1) = f,(2¢73—1); i.e., that s(2¢73—1) = 0.
This is clear from Lemma 6.7, which implies that if s(n) > 0 then n has at least one
huge gap (i.e. string of 0’s) in its binary expansion, where “huge” is one with a
number of 0’s nearly eight times as large the value of the number which follows it.
|

We close with a complete account of how s(n) can be nonzero in 5.4.
Lemma 6.7. Suppose s(n) = 1.
(1) If this is due to fo(n) = f(n — 1)+ 1 in 5.4, then either n =
Ag + Ay with v(Ay) = 84y + d(n), or for some t > 1, n =
Ag+ Ay + - + Ay with v(Ag) = 841 +v(A) — 1, v(A) =
8Air14+v(Ais1)—2 for1 <i<t—1andv(A;_1) = 8A;+5(n)—1.
(2) If this is due to fo(n) = f(n—1) =1 in 5.4, then n = n, + B
with n, as in (1) and v(A;) > 8B + 3.
Example 6.8. We illustrate this with the next-to-last example from 5.5. We have
§(22°416 1217 4 ¢) =1 as follows:
o Ife=0, it is type 6.7.(1) with Ay = 22°*2° and A, = 27
o [fe =1, it is type 6.7.(2) with n, = Ay + Ay as in the case
€ = 0 just considered, and B = 1.
o If e = 2, it is type 6.7.(1) with Ay = 22116 Ay = 2V and
Ay =2.
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Proof. (1) The inductive definition of s and f in 5.4, without regard for the specific
definition of fy, just the fact that f; is an increasing function, implies® that if s(n) = 1
due to fo(n) = f(n—1)+1, then there is a positive integer ¢ and integers ng < - - <
n; = n such that

fio) = folni) = {; it
(It must also be true that if n,_; < m < n;, then fi(m) < fj(n;).)

Consider first the case t = 1. The difference fj(m) — fi(m — 1) is at least 5
(=8+(—1) —2) unless v(m — 1) > 4. Thus the only way that f}(ni) — f{(no) might
equal 1isif ng = u-2° with e > 4 and n = ny = u-2° + A; with e = 84; + §(n),
using 5.4 and d(ng) = e — 1. Note that Ay in the lemma equals u - 2°. The claim of
the lemma when ¢ = 1 is thus established.

Now let t = 2. We must have ng = Ag and n; = Ag + A; as in the previous

paragraph. If n =ny = Ag+ Ay + Ay with fi(n2) = fi(n1) + 2, then

This implies that d(n;) > 3 and hence §(ny) = v(A;) — 1 by 5.3. This yields the
claim v(A;) = 843 4+ §(n) — 1 of the lemma when ¢ = 2. Note that the condition
v(Ap) = 841+ 6(Ag+ Ay) will now be given in the more explicit form with 6(Ay+ A;)
replaced by v(A;) — 1, since we now have the additional information that v(A;) > 3.

We will conclude with the case t = 3, after which the pattern for larger values of ¢
will have become clear. We must have ng = Ay, n1 = Ag+ A1, and ny = Ag+ A1+ Ay
as in the previous paragraph. If n = ny + As satisfies f{(n3) = fj(na2) + 2, then

8As +0(n) = d(na) + 2.

This implies that d(n2) > 3 and hence d(ny) = v(As) — 1, and yields the claim
v(Ay) = 843 + d(n) — 1 of the lemma when ¢ = 3. The condition v(A;) = 84, +
0(Ag+ Ay + Ay) — 1 has §(Ag + Ay + A,) replaced by v(As) — 1.
(2) Cases of s(n) = 1 due to fo(n) = f(n — 1) — 1 must be caused by an n,
as in (1) with n = n, + B and fi(n. +1i) < fi(n,) for 1 < i < B. This can
50ne can formulate and prove a closely-related result about how to form from a

strictly increasing sequence (n;) of integers an increasing sequence {(m; := n; + s;)
with s; = 0 or 1 such that m;;; — m; never equals 1.
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only happen if 8B + d(n, + B) < §(n,). As this implies that d(n.) > 3, we have
d(n.) = v(n,) — 1 = v(A4;) — 1. Because n, contains large gaps, we must also have

d(ny + B) > 2, and hence v(A;) >8B+3. N

[1]
2]

3
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