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Abstract. We determine explicit formulas for geodesics (in the
Euclidean metric) in the configuration space of ordered pairs (x, x′)
of points in Rn which satisfy d(x, x′) ≥ ε. We interpret this as two
or three (depending on the parity of n) geodesic motion-planning
rules for this configuration space. In the associated unordered
configuration space, we need not prescribe that the points stay
apart by ε. For this space, with a Euclidean-related metric, we
show that geodesic motion-planning rules correspond to ordinary
motion-planning rules on RPn−1.

1. Results

Recently David Recio-Mitter ([5]) introduced the notion of geodesic complexity,

which is an analogue of Farber’s topological complexity ([3]), but requires that paths

be minimal geodesics. This is a useful requirement for efficient motion-planning al-

gorithms. In [5] and [2], the geodesic complexity of several spaces was determined.

Configuration spaces are of central importance in topological robotics, since they

model the situation of several robots moving throughout a region. In this paper,

we first consider the case of two distinguished points (or balls) moving in Rn. We

obtain explicit formulas for the geodesics and optimal geodesic motion-planning rules.

We also consider two indistinguishable points moving in Rn, and show that geodesic

motion-planning rules for these correspond to ordinary motion-planning rules in real

projective space RP n−1.

Let F (Rn, 2) denote the ordered configuration space of two distinct points in Rn. It

is a subspace of R2n and is given the Euclidean metric. This space is not geodesically

complete. For example, there is no geodesic from ((1, 0), (0, 1)) to ((−1, 0), (0,−1))
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since the linear path σ(t) = ((1 − 2t, 0), (0, 1 − 2t)) has σ(1
2
) 6∈ F (Rn, 2), but there

are paths in F (Rn, 2) between these points arbitrarily close to σ. By “geodesic,” we

will always mean “minimal geodesic.”

For a positive number ε, we consider the subspace of F (Rn, 2) consisting of points

(x, x′) for which d(x, x′) ≥ ε. By scaling, we may assume ε = 2, and define

F0(Rn, 2) = {(x, x′) ∈ F (Rn, 2) : d(x, x′) ≥ 2}.

This can be viewed as the space of ordered pairs of disjoint open unit balls in Rn.

Note that F0(Rn, 2) is a manifold with boundary ∂F0 consisting of points of the form

(x − u, x + u) with ‖u‖ = 1. In the following theorem, we give explicit formulas for

geodesics in F0(Rn, 2) between any two points.

Theorem 1.1. Let P = (a, a′) and Q = (b, b′) be points of F0(Rn, 2). Let

h = (a′ − a)/2, k = (b′ − b)/2, A = (a′ + a)/2, B = (b′ + b)/2.

Let δ = min{d(tb+(1− t)a, tb′+(1− t)a′) : 0 ≤ t ≤ 1}, the minimal distance between

the two components of the linear path between P and Q.

a. If δ ≥ 2, the linear path from P to Q is the unique geodesic

between P and Q in F0(Rn, 2).

b. If 0 < δ ≤ 2, there is a unique geodesic in F0(Rn, 2) from P to

Q. It is the path composition `1σ`2, where `1 is the linear path

from P to C0 = (x − u, x + u), σ the geodesic in ∂F0 from C0

to C1 = (y − v, y + v), described in Proposition 1.4, and `2 the

linear path from C1 to Q. Here u and v are unique unit vectors

in Rn satisfying

h · u = 1 and k · v = 1 (1.2)

with minimal ‖u− v‖. Let β be the angle between this u and v

with 0 ≤ β < π. Then

x =
βA+ S0B + S1A

β + S0 + S1

, y =
βB + S0B + S1A

β + S0 + S1

, (1.3)

where S0 =
√
‖h‖2 − 1 and S1 =

√
‖k‖2 − 1. If β = 0, then

C0 = C1, δ = 2, and `1`2 is the linear path from P to Q. When
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δ = 2, the linear path in (a) can also be obtained by the method

of (b).

c. If δ = 0, then h and k are parallel in opposite directions, and

conversely. In this case, the unit vector solutions u, v of (1.2)

with minimal ‖u− v‖ are

u =
h

‖h‖2
+

S0

‖h‖
w, v =

k

‖k‖2
+

S1

‖k‖
w,

where w ranges over the set of all points satisfying h ·w = 0 and

w ·w = 1. The geodesics from P to Q are paths as described in

(b) for each of these pairs u, v, using (1.3) and Corollary 2.5.

We will refer to these as type (a), (b), or (c) paths or Situations. In Proposition 2.4

and Corollary 2.5 we give explicit formulas for u, v, and β in terms of h and k.

The geodesics in ∂F0 to which we just referred are described in the following result.

Proposition 1.4. Let u and v be unit vectors in Rn, and α be the angle from u to v

with 0 ≤ α < π. For 0 ≤ t ≤ 1, let

u(t) =
sin((1− t)α)u+ sin(tα)v

sinα
if α > 0. If α = 0, then u(t) = u = v for all t. For x, y ∈ Rn, the unique geodesic in

∂F0 from (x− u, x+ u) to (y − v, y + v) is the curve

σ(t) = ((1− t)x+ ty − u(t), (1− t)x+ ty + u(t)).

Its length is √
2(‖x− y‖2 + α2). (1.5)

Recall that the geodesic complexity GC(X) is the smallest k such that X ×X can

be partitioned into ENRs E0, . . . , Ek such that on each Ei there is a continuous map

si from Ei to the free path space PX such that si(x0, x1) is a geodesic from x0 to x1.

([5]) The topological complexity TC(X) is defined similarly without requiring that

the paths be geodesics.([3]) Our second result is the determination of GC(F0(Rn, 2)).

Theorem 1.6. For n ≥ 2,

GC(F0(Rn, 2)) = TC(F0(Rn, 2)) = TC(Sn−1) =

{
1 n even

2 n odd.
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The unordered configuration space C(R2, 2) is the quotient of F (Rn, 2) by the

involution which reverses the order of the two points. Points of C(Rn, 2) are sets

{a, a′} with a, a′ ∈ Rn. Surprisingly, C(Rn, 2) is, in some sense, easier for these

considerations than F (Rn, 2).

Theorem 1.7. With d denoting the Euclidean metric in Rn × Rn, defining

dU({a, a′}, {b, b′}) = min(d((a, a′), (b, b′)), d((a, a′), (b′, b)))

gives a metric on C(Rn, 2) which has linear geodesics between any two points.

So, we need not bother with the intricacies for geodesics in F (Rn, 2) caused by

the need to keep points at least a certain distance apart. The space C(Rn, 2) has

the homotopy type of RP n−1, and so the following result, which we prove in Section

4, may not be surprising. The proof will show that the geodesics in C(Rn, 2) are

obtained from not-necessarily-geodesic paths in RP n−1.

Theorem 1.8. For n ≥ 2, GC(C(Rn, 2)) = TC(RP n−1).

By [4], TC(RP n) equals the immersion dimension of RP n unless n = 1, 3, or 7, but

this does not enter into our proof.

In Section 5, we consider a different metric on F (Rn, 2) in which it is geodesically

complete, and discuss geodesics in that metric.

2. Proof of Theorem 1.1

The following proof of Proposition 1.4 benefited from ideas of David L. Johnson.

Proof of Proposition 1.4. With u · v = cosα and u · u = 1 = v · v, u(t) = c0u+ c1v is

obtained by solving u · (c0u + c1v) = cos(tα) and (c0u + c1v) · (c0u + c1v) = 1. We

have

σ′(t) = (−x+ y − α
sinα

(− cos((1− t)α)u+ cos(tα)v),

−x+ y + α
sinα

(− cos((1− t)α)u+ cos(tα)v)).

Expanding cos(α − tα) yields ‖ − cos((1 − t)α)u + cos(tα)v‖2 = sin2 α, and hence

‖σ′(t)‖2 = 2(‖x− y‖2 + α2), which implies the claim about the length of the curve.

A constant-speed curve σ with σ′′ orthogonal to the surface is a geodesic. We have

σ′′(t) = α2

sinα
(sin((1− t)α)u+ sin(tα)v,−(sin((1− t)α)u+ sin(tα)v)).
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The surface ∂F0 is parametrized by X(x, u) = (x − u, x + u) with x ∈ Rn and

u ∈ Sn−1. Then σ′′(t) is orthogonal to the x-directions and is orthogonal to the

spherical parameter u since it is a multiple of the radius vector at each point.

Since σ′(0) = (−x+ y − α
sinα

(− cos(α)u+ v),−x+ y + α
sinα

(− cos(α)u+ v)), every

tangent direction from the initial point (x − u, x + u) is obtained for one of our

geodesics, showing that they are unique.

The following lemma will be very important to our analysis.

Lemma 2.1. Let (a, a′) ∈ F0(Rn, 2), and let h = (a′−a)/2 ∈ Rn. If u is a unit vector

in Rn and x ∈ Rn, the segment between (a, a′) and (x− u, x+ u) lies in F0(Rn, 2) iff

h · u ≥ 1.

Proof. We require that for t ∈ [0, 1]

d(ta+ (1− t)(x− u), ta′ + (1− t)(x+ u)) ≥ 2.

Halving and squaring, this becomes

1 ≤ ‖th+ (1− t)u‖2

= t2‖h‖2 + 2t(1− t)h · u+ (1− t)2.

By assumption, ‖h‖2 ≥ 1, so this quadratic function f(t) satisfies f(0) = 1 and

f(1) ≥ 1. It is ≥ 1 for all t ≥ 0 iff f ′(0) ≥ 0. Since f ′(0) = −2 + 2h · u, the result

follows.

Because of Lemma 2.1, paths of the form `1σ`2 in Theorem 1.1(b) exist as long as

h ·u ≥ 1 and k ·v ≥ 1 for unit vectors u and v, for any x and y. The proof of Theorem

1.1 will show that minimal length of such paths is achieved when h ·u = 1 = k · v and

‖u − v‖ is minimized. The following result relates intersections of the hyperplanes

h ·u = 1 and k ·u = 1 inside and on the unit sphere to the value of δ in Theorem 1.1,

which in turn determines the types of geodesics.

Proposition 2.2. Let h, k, and δ be as in Theorem 1.1. Let H = ‖h‖2 ≥ 1,

K = ‖k‖2 ≥ 1, and D = h · k.

• If min(H,K) ≤ D, then δ2 = 4 min(H,K) ≥ 4, so δ ≥ 2.
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• If min(H,K) ≥ D and h 6= k, then

δ2 = 4(HK −D2)/(H +K − 2D).

In this case, regarding solutions of h · u = 1 and k · u = 1, we

have

i. There exist solutions with ‖u‖ < 1 (and more than one

solution with ‖u‖ = 1) iff δ > 2.

ii. There exists a unique solution with ‖u‖ = 1 iff δ = 2.

iii. There exist no solutions with ‖u‖ ≤ 1 iff δ < 2.

Proof. Note thatHK ≥ D2 by Cauchy-Schwarz, andH+K > 2D, since ‖h‖2+‖k‖2 >
2‖h‖ ‖k‖ cosα when h 6= k.

Let d2(t) = ‖2tk + 2(1 − t)h‖2 = 4(t2K + (1 − t)2H + 2t(1 − t)D). Then δ2 =

min(d2(t) : t ∈ [0, 1]). The minimum of d2(t) over all t ∈ R occurs when t =

t0 := H−D
H+K−2D , and has value 4 HK−D2

H+K−2D . Note that t0 ∈ [0, 1] iff min(H,K) ≥ D. If

min(H,K) ≤ D, then d2(t) does not have a relative minimum for 0 < t < 1 so its

absolute minimum on [0, 1] occurs at an endpoint.

If k is a scalar multiple of h, the result is easily verified, so we assume this is not

the case, and have HK −D2 > 0. Now let u = αh + βk + ` with ` orthogonal to h

and k. If n = 2, omit `. The equations h · u = 1 and k · u = 1 become αH + βD = 1

and αD + βK = 1, whose solution is

α =
K −D

HK −D2
, β =

H −D
HK −D2

,

yielding

u · u =
H +K − 2D

HK −D2
+ ` · `. (2.3)

Thus when k is not a scalar multiple of h, we have ‖u‖2 = 4
δ2

+‖`‖2. The conclusions

follow. By the complementary nature of the cases, it suffices to show implication in

one direction. For each hypothesis on δ, the conclusion about ‖u‖ for solutions is

clear. In case (i), the solutions are obtained by varying `.

By Proposition 2.2, the next result applies exactly when δ ≤ 2.
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Proposition 2.4. Let h and k satisfy ‖h‖ > 1 and ‖k‖ > 1. Assume there does not

exist u with h · u = 1 = k · u with ‖u‖ < 1. The solutions of h · u = 1 = k · v and

‖u‖ = 1 = ‖v‖ with minimal ‖u− v‖ are

i. If k is a scalar multiple of h, then

u =
h

‖h‖2
+

S0

‖h‖
w, v =

k

‖k‖2
+

S1

‖k‖
w,

where w ranges over the set of vectors satisfying h · w = 0 and

w · w = 1. Here S0 and S1 are as in Theorem 1.1.

ii. If k is not a scalar multiple of h, then there is a unique solution,

using notation of Proposition 2.2,

u =
h

H
+
S0(k − D

H
h)

√
HK −D2

v =
k

K
+
S1(h− D

K
k)

√
HK −D2

.

Proof. (i.) The vectors u and v lie on the intersections with the unit sphere of parallel

hyperplanes. The vector u can be written uniquely as u = c0h+c1w satisfying h·u = 1,

u ·u = 1, w ·w = 1, and h ·w = 0. These equations yield the above formula for u, and

similarly for v. The vector v closest to u will be the one with the same unit vector

w, and for all vectors w, the values of ‖u− v‖ are the same.

(ii.) Let ` = k − D
H
h, which is orthogonal to h. Then v can be written uniquely as

ah + b` + m, with m orthogonal to h and `. The point v closest to the hyperplane

h · u = 1 will be the one with the largest a. From v · k = 1, we deduce 1 =

aD + b(HK −D2)/H. Use this to eliminate b. Then v · v = 1 implies

1 = a2H +

(
H(1− aD)

HK −D2

)2(
HK −D2

H

)
+M,

where M = ‖m‖2. This simplifies to

0 = HK a2 − 2Da+ 1− (1−M)(HK −D2)/H,

which has solution

a =
D ±

√
D2 +K((1−M)(HK −D2)−H)

HK
.
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The maximum of this occurs whenM = 0 and has a = (D+
√

(K − 1)(HK −D2))/HK.

One easily finds b now and obtains the formula for v. The formula for u is obtained

similarly.

Corollary 2.5. The angle β in Theorem 1.1(b) satisfies

cos(β) =
(S0 + S1)

√
HK −D2 + (1− S0S1)D

HK
.

The angle β in Theorem 1.1(c) satisfies

cos(β) =
D

HK
+

S0S1√
HK

.

Proof. We compute cos(β) = u · v from Proposition 2.4.

Proof of Theorem 1.1. The conclusion of part (a) is immediate. Next we reduce con-

sideration of part (c) to that of part (b).

First note that δ = 0 iff tb + (1 − t)a = tb′ + (1 − t)a′ for some t ∈ [0, 1] iff b′ − b
and a′− a are negative multiples of one another. Then the analysis of type-(b) paths

which follows applies, with minor modifications which are discussed below, to all of

the pairs u, v obtained in Proposition 2.4(i), listed again in Theorem 1.1(c).

Geodesics in a manifold with boundary are path compositions of geodesics in the

manifold and geodesics in the boundary.(e.g., [1].) In our case, this will consist of

at most one geodesic in ∂F0. [[If it were `1σ1`2σ2`3, then `2 would be a line segment

connecting two points of ∂F0. Similarly to the proof of Lemma 2.1, the line segment

connecting two points (x−u, x+u) and (y−v, y+v) of ∂F0 will lie outside F0(Rn, 2)

unless the two points have u = v, in which case it is a line segment lying in ∂F0.

When path-multiplied by an angle-changing geodesic in ∂F0, the result will not be a

geodesic.]] So we need just consider path compositions of the form `1σ`2.

If ‖h‖ = 1, then P ∈ ∂F0. By the argument just described, we may then choose

`1 to be the constant path. This is consistent with (1.3) since we would have S0 = 0,

x = A, and u = h. Similarly, if ‖k‖ = 1, the path `2 may be ignored. Thus we shall

assume ‖h‖ > 1 and ‖k‖ > 1, so Proposition 2.4 applies.
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With the notation of the theorem, let D̂1 denote the length of the linear path `1 in

F0(Rn, 2) from P to any point (x− u, x+ u) with ‖u‖ = 1. This equals√
‖x− u− a‖2 + ‖x+ u− a′‖2

=
√
‖a‖2 + ‖a′‖2 + 2‖x‖2 + 2− 4x · A− 4h · u

=
√

2
√
‖h‖2 + 1 + ‖x− A‖2 − 2h · u. (2.6)

A path `1σ`2 has length D̂1 + D̂3 + D̂2, where D̂3 is the length of the curved path σ

described in Proposition 1.4, and D̂2 is a formula similar to (2.6) for a linear path `2

from (y− v, y+ v) to Q. Let Di = D̂i/
√

2 and T = D1 +D3 +D2. If h · u = 1 = k · v
and α is the angle between u and v, the formulas for D1 and D2 simplify nicely, and

we have

T =
√
S2
0 + ‖x− A‖2 +

√
‖x− y‖2 + α2 +

√
S2
1 + ‖y −B‖2. (2.7)

Setting ∂T/∂xi = 0 gives

xi − Ai√
S2
0 + ‖x− A‖2

+
xi − yi√

‖x− y‖2 + α2
= 0, (2.8)

so

(xi − Ai)2(‖x− y‖2 + α2) = (xi − yi)2(S2
0 + ‖x− A‖2).

Summing over i and cancelling yields α2‖x − A‖2 = S2
0‖x − y‖2. Now (2.8) says

α(x−A) = (y−x)S0. Similarly α(y−B) = (x− y)S1. Solving these equations yields

(1.3), with β replaced by α. This is a consequence of ∂T/∂xi = 0 = ∂T/∂yi and

(1.2).

When x and y are as in (1.3),

x− y = (A−B)α
α+S0+S1

, x− A = (B−A)S0

α+S0+S1
, y −B = (A−B)S1

α+S0+S1
, (2.9)

and we obtain the dramatic simplification

T =
√
‖A−B‖2 + (α + S0 + S1)2,

showing clearly that we should choose β to minimize α.

Note that β < π (so Lemma 1.4 applies), since the only way to have β = π would

be with the hyperplanes h · u = 1 and k · v = 1 tangent to the unit sphere, and

parallel, so ‖h‖ = 1 = ‖k‖, which we have removed from our consideration.
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We must also consider changes of T caused by changes in u or v. The more general

formula for T at any point is

T =
√
H + 1 + ‖x− A‖2 − 2h · u+

√
‖x− y‖2 + (arccos(u · v))2

+
√
K + 1 + ‖y −B‖2 − 2k · v. (2.10)

At our claimed critical point, which was derived from ∂T
∂xi

= 0 = ∂T
∂yi

, (1.2), and

minimal ‖u− v‖, u and v lie in the h-k plane by Proposition 2.4(ii). Changes in u or

v orthogonal to the h-k plane will not affect (2.10) at this point. For Situation (c),

each pair u, v is determined by a choice of w. They lie in the h-w plane. The analysis

here applies with h-k replaced by h-w.

Letting α denote the angle from v to u, and using
√
‖x− y‖2 + α2 for the middle

term of (2.10), we obtain

∂T

∂α
=

−h · du
dα√

S2
0 + ‖x− A‖2

+
α√

‖x− y‖2 + α2

=
α + S0 + S1√

(α + S0 + S1)2 + ‖B − A‖2

(−h · du
dα

S0

+ 1

)
, (2.11)

incorporating (2.9). We can parametrize Rn so that v = (1, 0), u = (cosα, sinα, 0),

and h = (h1, h2, 0). We obtain h · du
dα

= −h1 sinα + h2 cosα, so

S2
0 − (h · du

dα
)2 = h21 + h22 − 1− (h21 sin2 α + h22 cos2 α− 2h1h2 cosα sinα)

= (h1 cosα + h2 sinα)2 − 1

= 0.

Noting that h · du
dα
≥ 0 since h · u had minimal allowable value (1) at our point, we

obtain h · du
dα

= S0, and so ∂T
∂α

= 0 in (2.11).

We have shown that the assumption (1.2) leads to the unique critical point of T

described in Theorem 1.1(b) when h and k are not parallel, and to any of the claimed

points in Situation (c), and Lemma 2.1 says that we must have h ·u ≥ 1 and k ·v ≥ 1.

If h · u = t > 1, corresponding to a larger value of α, then we can find values of x

and y that make ∂T/∂xi = 0 = ∂T/∂yi with formulas similar to (1.3) except that

now S0 =
√
‖h‖2 + 1− 2t. An analysis similar to the above paragraph will lead to

∂T/∂α > 0 for changes in the h-k plane. So points with h · u > 1 or k · v > 1 cannot
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be critical points. We conclude that our critical point is a unique minimum of T in

Situation (b), and our claimed points are the only critical points in Situation (c).

Next we justify the next-to-last sentence of part (b) by noting that if β = 0, so

u = v and then clearly x = y in (1.3), and then showing that

(x− u, x+ u) = S1

S0+S1
P + S0

S0+S1
Q,

so the unique point where the lines from P and Q meet ∂F0 is on the line connecting

P and Q.

This requires showing that

S0B+S1A
S0+S1

± u = S1

S0+S1
(A± h) + S0

S0+S1
(B ± k),

hence we need to prove

u =
S1h+ S0k

S0 + S1

. (2.12)

By Proposition 2.4(ii), u is in the h-k plane. We parametrize that plane so that h =

(h1, h2), k = (k1, k2), and u = (cos θ, sin θ). Since h · u = 1, h2 = (1− h1 cos θ)/ sin θ,

so

S0 =

√
h21 +

(
1−h1 cos θ

sin θ

)2 − 1 =

√
cos2 θ − 2h1 cos θ + h21

| sin θ|
=

∣∣∣∣cos θ − h1
sin θ

∣∣∣∣,
and similarly S1 = |(cos θ − k1)/ sin θ|.

Since θ is the common endpoint of (otherwise disjoint) intervals on which h1 cos θ+

h2 sin θ ≥ 1 and k1 cos θ + k2 sin θ ≥ 1, the derivatives of these expressions must have

opposite signs at θ. The derivative of h1 cos θ + h2 sin θ is

−h1 sin θ + 1−h1 cos θ
sin θ

cos θ = cos θ−h1
sin θ

.

Thus cos θ − h1 and cos θ − k1 have opposite signs. Thus

S1h1 + S0k1
S0 + S1

=
(cos θ − k1)h1 − (cos θ − h1)k1
−(cos θ − h1) + (cos θ − k1)

= cos θ.

Similarly, (S1h2 + S0k2)/(S0 + S1) = sin θ, proving (2.12) and hence the next-to-last

sentence of part (b) of Theorem 1.1.

Finally, regarding the last sentence of part (b): If δ = 2, there are points c =

(1 − t)a + tb and c′ = (1 − t)a′ + tb′ such that d(c, c′) = 2. There is a unique unit

ball having cc′ as a diameter, and the method of (b) will yield `1 the linear path from

(a, a′) to (c, c′), σ a constant path, and `2 the linear path from (c, c′) to (b, b′).
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Proof of Theorem 1.6. Let E0 denote the set of all (P,Q) ∈ F0(Rn, 2) × F0(Rn, 2)

of type (c) in Theorem 1.1, and E1 it complement. First we show that the unique

geodesics at points (P,Q) of E1 vary continuously with (P,Q), giving a geodesic

motion planning rule on E1.

For the type-(b) geodesics, the issue is whether u and v, hence β, vary continuously

with (P,Q). Small changes in (P,Q) cause small changes in h and k, and hence small

changes in u and v of norm 1 satisfying h ·u = 1 = k ·v. If (u, v) has minimal positive

‖u− v‖ for such vectors, there will be a neighborhood of (u, v) on which this is true.

Alternatively, u and v vary continuously with h and k by Corollary 2.5.

The linear paths of type (a) vary continuously with the parameters. By the last

two sentences of Theorem 1.1(b), the paths in the intersection of types (a) and (b)

agree, and so by the Pasting Lemma, we have a continuous choice of geodesics on E1.

If n is even, let V be a unit-length vector field on Sn−1. In Theorem 1.1(c), let w =

V ( h
‖h‖). This leads to a continuous choice of geodesics on E0. Hence GC(F0(Rn, 2)) ≤

1 if n is even. Since

F0(Rn, 2) ≈ Rn × {x ∈ Rn : ‖x| ≥ 2} ' Sn−1 (2.13)

and TC is a homotopy invariant, we obtain, for n even,

GC(F0(Rn, 2)) ≥ TC(F0(Rn, 2)) = TC(Sn−1) = 1 ≥ GC(F0(Rn, 2)).

Hence we have equality.

If n is odd, let V be a unit-length vector field on Sn−1−{(1, 0)}. Then w = V ( h
‖h‖)

in 1.1(c) leads to a continuous choice of geodesics on E0 − Z, where Z is the set of

((a, a′), (b, b′)) ∈ E0 such that a′ − a and b′ − b are scalar multiples of (1, 0). On

Z, you could use the geodesics obtained from using w = (0, 1, 0) in 1.1(c). Thus

GC(F0(Rn, 2)) ≤ 2, and since TC(Sn−1) = 2, we have equality as in the previous

paragraph.

3. Examples when n = 2

We illustrate two examples of geodesics when n = 2.
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Let P = (P1, P2) = ((−6, 4), (6, 8)) and Q = (Q1, Q2) = ((8,−6), (2,−10)). We

have h = (6, 2) and k = (−3,−2). From (1.3), we obtain x = (3.1596,−2.8468)

and y = (3.2474,−3.0927). From Proposition 2.4, we obtain u = (.4622,−.8867)

and v = (.3022,−.9533), and from Corollary 2.5, β = .1736. In this example, our

path has length 25.2455, whereas the straight line path from P to Q (which is not in

F0(R2, 2)) has length 25.2190. Although we cannot quite draw the short middle part

of the paths, in Figure 3.1 we picture the paths in this example.

Figure 3.1. Example of geodesic.

•

•

•

•

P2

Q2

P1

Q1

Now we change the 8 in P2 of the above example to 12, so that ~P1P2 and ~Q1Q2 are

parallel in opposite directions; i.e., h = (6, 4) and k = (−3,−2).

The two equal paths are depicted in Figure 3.2. We have w = ±(2,−3)/
√

13 in

part (c) of Theorem 1.1. Also, x = (3.2385,−2.3633) and y = (3.4291,−2.9730) in

(1.3) and β = .4202 in Corollary 2.5. The length of each of these paths in F0(Rn, 2)

is 28.375, compared with 28.213 for the straight-line path from P to Q, which is not

in F0(Rn, 2).
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Figure 3.2. Example of two geodesics.

•

•

•

•

P2

Q2

P1

Q1

4. Unordered configuration space

As we stated in Theorem 1.7, the unordered configuration space C(Rn, 2) has a

natural, Euclidean-related metric, and it is geodesically complete.

Proof of Theorem 1.7. We show that dU satisfies the triangle inequality. Without loss

of generality, assume

d((a, a′), (b, b′)) ≤ d((a, a′), (b′, b)) and d((b, b′), (c, c′)) ≤ d((b, b′), (c′, c)).

Then

dU({a, a′}, {c, c′}) ≤ d((a, a′), (c, c′))

≤ d((a, a′), (b, b′)) + d((b, b′), (c, c′))

= d({a, a′}, {b, b′}) + d({b, b′}, {c, c′}).

The quotient topology on C(Rn, 2) comes from Rn × (Rn − {0})/ ∼ under {a, a′} 7→(
a+a′

2
,
[
a−a′
2

])
. Our metric dU corresponds to the metric d([x], [x′]) = min(d(x, x′), d(x,−x′))

on (Rn − {0})/ ∼, which gives the quotient topology.

If dU({a, a′}, {b, b′}) = d((a, a′), (b, b′)), then the linear path (1 − t)(a, a′) + t(b, b′)

lies in F (Rn, 2), so its equivalence class is in C(Rn, 2). [[As observed at the beginning
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of the proof of Theorem 1.1, the only thing that would prevent the path from being

in F (Rn, 2) is if b′ − b is a negative multiple of a′ − a. If this is the case, then

d((a, a′), (b, b′))2 − d((a, a′), (b′, b))2

= ‖a− b‖2 + ‖a′ − b′‖2 − ‖a− b′‖2 − ‖a′ − b‖2

= −2a · b− 2a′ · b′ + 2a · b′ + 2a′ · b

= 2(a′ − a) · (b− b′) (4.1)

> 0,

contradicting the assumption that dU({a, a′}, {b, b′}) = d((a, a′), (b, b′)).]]

Remark 4.2. The analogue of Theorem 1.7 is valid for C(Rn, k) for any n and k.

Proposition 4.3. For a, a′, b, and b′ in Rn, d((a, a′), (b, b′)) = d((a, a′), (b′, b)) iff

(a′ − a) · (b′ − b) = 0. Let

E0 = {({a, a′}, {b, b′}) ∈ C(Rn, 2)× C(Rn, 2) : (a′ − a) · (b′ − b) 6= 0}.

There is a continuous geodesic motion-planning rule on E0.

Proof. The first part follows as in (4.1). At each point of E0, there is a unique choice

of linear geodesic whose length equals dU({a, a′}, {b, b′}), varying continuously with

the point of E0.

Now we can prove Theorem 1.8 about GC(C(Rn, 2)).

Proof of Theorem 1.8. Let E1 = C(Rn, 2)×C(Rn, 2)−E0, with E0 as in Proposition

4.3. We need to describe subsets of E1 on which we can make a continuous choice

of whether to go from (a, a′) to (b, b′), or to (b′, b). Let tn = TC(RP n−1). One

motion-planning rule for RP n−1 is on the domain D0 consisting of all pairs (`0, `1)

such that `0 · `1 6= 0. On D0, rotate from `0 to `1 in their plane through the smaller

arc (< π/2). Suppose Di is one of the other tn subsets of RP n−1 × RP n−1 on which

there is a motion-planning rule si. For (`0, `1) ∈ Di, si associates to an orientation

(i.e., direction) on `0 an orientation on `1 by using the path from `0 to `1 specified by

si. This association of orientations is continuous on Di.
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Let Ei ⊂ E1 denote all ({a, a′}, {b, b′}) such that, if `0 is the line through a and

a′, translated to pass through 0, and `1 the translated line passing through b and b′,

then (`0, `1) ∈ Di. If a > a′ under the orientation of `0, choose the linear geodesic

from (a, a′) to (b, b′), where b > b′ under the associated orientation of `1. This is a

continuous choice on Ei.

Thus we have partitioned C(Rn, 2) × C(Rn, 2) into tn + 1 subsets on which we

have geodesic motion planning rules, so GC(C(Rn, 2)) ≤ TC(RP n−1). Since, from

(2.13), C(Rn, 2) has the homotopy type of RP n−1, we have the following string of

inequalities, which imply the claimed equality.

GC(C(Rn, 2)) ≥ TC(C(Rn, 2)) = TC(RP n−1) ≥ GC(C(Rn, 2)).

Note that our argument did not use that the motion-planning rules of [4] can be

chosen to be geodesics.

5. A different metric

There is an obvious homeomorphism F (Rn, 2) → Rn × Sn−1 × R+, where R+ =

(0,∞), given by

(a, a′) 7→
(
a′ + a

2
,
a′ − a
‖a′ − a‖

,
‖a′ − a‖

2

)
.

In the notation of Theorem 1.1, with ĥ = h/‖h‖, it is (a, a′) 7→ (A, ĥ, ‖h‖). Here A

is the midpoint, and h the directed segment from the midpoint to the second point.

The inverse sends (A, u, r) back to (A− ru,A+ ru).

We use the Euclidean metric on Rn and R+, and arclength metric dS on Sn−1,

and the product metric on their product to obtain a metric d′ on F (Rn, 2) which is

geodesically complete. The formula, with B and k also as in Theorem 1.1, is

d′((a, a′), (b, b′)) =

√
‖B − A‖2 + dS(ĥ, k̂)2 + (‖k‖ − ‖h‖)2.

The unique geodesic from (a, a′) to (b, b′), if dS(ĥ, k̂) < π, is

t 7→ ((1−t)A+tB−((1−t)‖h‖+t‖k‖)u(t), (1−t)A+tB+((1−t)‖h‖+t‖k‖)u(t)),
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where, similarly to Proposition 1.4, with α = dS(ĥ, k̂),

u(t) =
sin((1− t)α)ĥ+ sin(tα)k̂

sinα
.

If dS(ĥ, k̂) = π, we use vector fields on Sn−1 or Sn−1 − {x0} to choose geodesics, and

obtain an analogue of Theorem 1.6 for F (Rn, 2) in this metric. Figure 5.1 shows the

path obtained in this way between the points that we used in the first example of

Section 3.

Figure 5.1. Geodesic in F (R2, 2) using “different” metric

There is an analogous metric on C(Rn, 2), but we will not discuss it here because

the Euclidean-related metric considered earlier was already geodesically complete and

highly satisfactory.
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