
TOPOLOGICAL COMPLEXITY OF PLANAR POLYGON SPACES
WITH SMALL GENETIC CODE

DONALD M. DAVIS

Abstract. We determine, within 1, the topological complexity of
many planar polygon spaces mod isometry. In all cases considered
except for those homeomorphic to real projective space or n-tori,
the upper and lower bounds given by dimension and cohomology
considerations differ by 1. The spaces which we consider are those
whose genetic codes, in the sense of Hausmann and Rodriguez,
have a single gene, and its size is ≤ 4.

1. Statement of results

The topological complexity, TC(X), of a topological space X is, roughly, the num-

ber of rules required to specify how to move between any two points of X. A “rule”

must be such that the choice of path varies continuously with the choice of endpoints.

(See [3, §4].) We study TC(X) where X = M(`) is the space of equivalence classes

of oriented n-gons in the plane with consecutive sides of length `1, . . . , `n, identified

under translation, rotation, and reflection. (See, e.g., [4, §6].) Here ` = (`1, . . . , `n) is

an n-tuple of positive real numbers. Thus

M(`) = {(z1, . . . , zn) ∈ (S1)n : `1z1 + · · ·+ `nzn = 0}/O(2).

We can think of the sides of the polygon as linked arms of a robot, and then TC(X)

is the number of rules required to program the robot to move from any configuration

to any other.

Since permuting the `i’s does not affect the space up to homeomorphism, we may

assume `1 ≤ · · · ≤ `n. We assume that `n < `1 + · · · `n−1, so that the space M(`) has

more than one point. We also assume that ` is generic, which means that there is
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no subset M ⊂ [n] = {1, . . . , n} with
∑
i∈M

`i = 1
2

n∑
i=1

`i. When ` is generic, M(`) is an

(n− 3)-manifold ([4, p.314]), and hence, by [3, Cor 4.15], satisfies

TC(M(`)) ≤ 2n− 5. (1.1)

It is well-understood that the homeomorphism type of M(`) is determined by which

subsets S of [n] are short, which means that
∑
i∈S

`i <
1
2

n∑
i=1

`i. For generic `, a subset

which is not short is called long. Define a partial order on the power set of [n] by

S ≤ T if S = {s1, . . . , s`} and T ⊃ {t1, . . . , t`} with si ≤ ti for all i. As introduced in

[5], the genetic code of ` is the set of maximal elements (called genes) in the set of short

subsets of [n] which contain n. The homeomorphism type of M(`) is determined by

the genetic code of `. Note that if ` = (`1, . . . , `n), then all genes have largest element

n.

Our main theorem is

Theorem 1.2. If the genetic code of ` consists of a single gene of size 2, 3, or 4, with

largest element n ≥ 5, and is not 〈{5, 2, 1}〉 or 〈{6, 3, 2, 1}〉, then TC(M(`)) ≥ 2n−6.

The two excluded cases are homeomorphic to tori (S1)2 and (S1)3. It is known

([3, (4.12)]) that TC((S1)n) = n + 1; its genetic code is 〈{n, n − 3, n − 4, . . . , 1}〉.
The other known case in which it is not true that TC(M(`)) ≥ 2n − 6 is the case

in which the genetic code is 〈{n}〉. This space M(`) is homeomorphic to RP n−3,

for which the TC is often much less than 2n − 7.([3, §4.8]) In [1], we showed that

TC(M(1n−1, n − 2k)) ≥ 2n − 6 if 2 < 2k < n. (We use exponents for repetition in

length vectors.) The genetic code of this is 〈{n, n− 1, . . . , n− k + 1}〉.
Thus in all cases considered so far, except for tori and real projective spaces, the

upper bound for topological complexity of these planar polygon spaces given by di-

mension and the lower bound given by our cohomological argument differ by 1. This

includes 12 out of the 21 6-gon spaces but only 26 out of the 135 7-gon spaces.([6])

Only the complicated nature of the cohomology rings H∗(M(`);Z2) hinders investi-

gation of spaces with more complicated genetic codes. It seems not unreasonable to

think that perhaps all spaces M(`) of n-gons satisfy TC(M(`)) ≥ 2n − 6 except for

real projective spaces and tori.
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We will prove in Theorems 2.3, 2.5, and 3.24 that, if X = M(`) with single gene

of size 2, 3, and 4, respectively, and with largest element n, then there are classes

v1, . . . , v2n−7 in H1(X) such that

2n−7∏
i=1

(vi × 1 + 1× vi) 6= 0 ∈ H∗(X ×X). (1.3)

Here and throughout, all cohomology groups have coefficients in Z2. Theorem 1.2

then follows from [3, Cor 4.40].

2. Proof of Theorem 1.2 for genetic codes with a single gene of size

2 and 3

The first two of the three cases of (1.3) are handled in this section.

We review the determination of H∗(M(`)) obtained in [4], similar to the interpre-

tation in [1, Thm 2.1].

Proposition 2.1. If ` has length n, then the ring H∗(M(`)) is generated by classes

R, V1, . . . , Vn−1 in H1(M(`)) subject to only the following relations:

(1) All monomials of the same degree which are divisible by the

same Vi’s are equal. If S denotes this set of i’s and d the degree,

this element is denoted by T dS .

(2) If S ⊂ [n− 1] has S ∪ {n} long, then
∏
i∈S

Vi = 0.

(3) If L ⊂ [n− 1] is long and |L| ≤ d+ 1, then∑
S⊂L

S∪{n} short

T dS = 0. (2.2)

Note that the d is not an exponent, and that if S = ∅, then T dS = Rd is included

in the above sum. We will often denote T d{i}, T
d
{i,j}, and T d{i,j,k} by T di , T di,j, and T di,j,k,

respectively, and will omit the superscript when it it clear from the context. If the

LHS of (2.2) is denoted Rd
L, then the fact that

V`Rd
L =

{
Rd+1
L∪{`} −R

d+1
L ` 6∈ L

0 ` ∈ L

and RRd
L = Rd+1

L implies that the relations (2.2) span the ideal which they generate.



4 DONALD M. DAVIS

The first case of (1.3), and hence Theorem 1.2, follows from the following result.

We remark that one such ` is (1a, 2n−a−1, 2n− a− 5).

Theorem 2.3. If ` has genetic code 〈{n, a}〉 with 1 ≤ a ≤ n − 1, and X = M(`),

then

(V1 × 1 + 1× V1)n−3(R× 1 + 1×R)n−4 6= 0 ∈ H∗(X ×X).

Proof. Since the genetic code has no sets of length 3, for all 2-subsets S, S∪{n} is long,

and hence all products ViVj are 0. Since {n, i} is long for i > a, we have Vi = 0 for

i > a. The long subsets contained in [n− 1] are the complements of the short subsets

containing n. These long subsets are exactly the (n − 2)-sets {n − 1, . . . , î, . . . , 1},
where the omitted element i satisfies i ≤ a. Thus the only relations of type (3) occur

in degree n− 3. Therefore, for 1 ≤ d ≤ n− 4, a basis for Hd(X) is {Rd, T d1 , . . . , T
d
a }.

The subsets S ⊂ {n− 1, . . . , î, . . . , 1} for which S ∪ {n} is short are just ∅ and {j}
for j ≤ a and j 6= i. Thus the relations of type (3) are

Rn−3 +
a∑
j=1
j 6=i

T n−3j = 0.

Subtracting pairs of relations reduces this set of relations to T n−31 = · · · = T n−3a and

Rn−3 = (a− 1)T n−31 . Note that this implies Hn−3(X) = Z2, which must be true since

X is an (n− 3)-manifold.

Let m = n− 3. We obtain, in bidegree (m,m− 1),

(V1 × 1 + 1× V1)m(R× 1 + 1×R)m−1

=
∑(

m
i

)(
m−1
m−i

)
V i
1R

m−i × V m−i
1 Ri−1

= (
(
2m−1
m

)
+ 1)Tm1 × Tm−11 + Tm1 ×Rm−1. (2.4)

Here we have used that
∑(

m
i

)(
m−1
m−i

)
=
(
2m−1
m

)
and noted that all terms in the sum

are of the form Tm1 ×Tm−11 except the one with i = m. Since {Rm−1, Tm−11 } is linearly

independent and Tm1 6= 0, (2.4) is nonzero.

Now let X = M(`) with genetic code {n, a + b, a} with n > a + b > a > 0

and n ≥ 6. Although irrelevant to our proof, we note this can be realized by ` =
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(2a, 3b, 6n−a−b−1, 6n−3b−4a−17). For a class v ∈ H1(X), we will let Dv = v⊗1+1⊗v.

(Think “diagonal.”) Note also that we are switching to tensor product notation, using

the Künneth isomorphism. The second case of (1.3 and hence Theorem 1.2 follows

immediately from the following result, the proof of which will occupy the rest of this

section.

Theorem 2.5. Let X = M(`) with genetic code {n, a+ b, a} with n > a+ b > a > 0

and n ≥ 6. Let m = n− 3 and suppose 2e−1 < m ≤ 2e. Then in H∗(X ×X),

a. if a is even, then (DV1)
2m−1−2e(DVa+b)(DR)2

e−1 6= 0;

b. if a is odd and m 6= 2e−1+1, then (DV1)
m−1(DVa+b)

2(DR)m−2 6=
0;

c. if a is odd and m = 2e−1 + 1, then (DV1)
m(DVa+b)

m−1 6= 0.

Similarly to the previous proof, Proposition 2.1 easily shows that, for 2 ≤ d ≤ n−5,

a basis for Hd(X) is {Rd} ∪ {T di : 1 ≤ i ≤ a + b} ∪ {T di,j : i ≤ a, i < j ≤ a + b},
and all other T dS are 0. Indeed, the sets S such that S ∪ {n} is short are {j, i} with

i < j ≤ a+ b and i ≤ a, {i} with i ≤ a+ b, and ∅. There are no additional relations

until degree n − 4 since the smallest L ⊂ [n − 1] for which L ∪ {n} is long has

|L| = n− 3 = m.

All the classes Vi with i ≤ a play the same role in the relations of type (3) in

Proposition 2.1, as do all the classes Vi with a < i ≤ a+b. The way that we will show

a class z in H2m−1(X × X) is nonzero is by constructing a uniform homomorphism

ψ : Hm−1(X)→ Z2 such that (φ⊗ψ)(z) 6= 0, where φ : Hm(X)→ Z2 is the Poincaré

duality isomorphism. By uniform homomorphism, we mean one satisfying

• ψ(Ti) = ψ(Tj) if i, j ≤ a or if a < i, j ≤ a+ b, and

• ψ(Ti,j) = ψ(Ti,k) if j, k ≤ a or if a < j, k ≤ a+ b.

We will let Y1 refer to any Ti with i ≤ a, and Y2 to any Ti with a < i ≤ a+b. Similarly,

Y1,1 denotes Ti,j with i < j ≤ a, while Y1,2 is Ti,j with i ≤ a < j ≤ a+ b. Usually the

superscript, indicating the grading, will be implicit. If θ : [a + b] → {1, 2} is defined

by θ(i) = 1 if i ≤ a, and 2 otherwise, then Yθ(S) = TS, where θ(S) is a multiset. If

ψ is a uniform homomorphism, then ψ(YW ) is a well-defined element of Z2 for each

of the four possible W . We also let wθ(i) = Vi. Thus V1 and Va+b in Theorem 2.5
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are replaced by w1 and w2, respectively. Also, R will sometimes be denoted by w0.

Finally, an element of [a+ b] is of type 1 if it is ≤ a, and otherwise is of type 2.

The relations of type (3) in Hm−1(X) have L obtained from [n− 1] by deleting one

element of type 1 and another of either type 1 or type 2. Call these relations R1,1

and R1,2. If a = 1, there are no R1,1 relations. Occasionally, we use a superscript

with RW to denote the grading.

If a > 1 and ψ is a uniform homomorphism, then ψ(R1,1) is

ψ(Rm−1) + (a− 2)ψ(Y1) + bψ(Y2) +
(
a−2
2

)
ψ(Y1,1) + (a− 2)bψ(Y1,2) = 0.

(2.6)

These coefficients count the number of relevant subsets S ⊂ L. For example, in the

last term, since this L contains a − 2 numbers of type 1 and b numbers of type 2,

there are (a − 2)b ways to choose a set S ⊂ L such that S ∪ {n} is short and S has

one type-1 element and one type-2 element, and ψ sends each of them to the same

element of Z2. Similarly, abbreviating ψ(YW ) as ψW , and ψ(R) as ψ0, ψ(R1,2) is the

relation

ψ0 + (a− 1)ψ1 + (b− 1)ψ2 +
(
a−1
2

)
ψ1,1 + (a− 1)(b− 1)ψ1,2 = 0. (2.7)

Proposition 2.8. Let φ : Hm(X) → Z2 be the Poincaré duality isomorphism, and

let φW = φ(YW ). Then

φ1,1 = φ1,2 = 1

φ2 = a− 1

φ1 = a+ b

φ0 = (a− 1)b+
(
a−1
2

)
.

Proof. By symmetry, φ is uniform. Using the notation introduced above, there are

relations in Hm(X) of the form R1 and R2 satisfying, respectively,

φ0 + (a− 1)φ1 + bφ2 +
(
a−1
2

)
φ1,1 + (a− 1)bφ1,2 = 0

φ0 + aφ1 + (b− 1)φ2 +
(
a
2

)
φ1,1 + a(b− 1)φ1,2 = 0,

as well as relations Rm
1,1 and Rm

1,2 like (2.6) and (2.7), but with ψ replaced by φ. As

one can check by row-reduction or substitution, the nonzero solution of these four

equations (mod 2) is the one stated in the proposition.
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Next we expand the expressions in Theorem 2.5. The parity of a is not an issue in

these expansions. Part (a) expands, in bidegree (m,m− 1), as (in our new notation)

2m−2−2e∑
i=1

(
2m−1−2e

i

)(
2e−1
m−i−1

)
wi1w2R

m−i−1 ⊗ w2m−1−2e−i
1 R2e−m+i

+w2R
m−1 ⊗ w2m−1−2e

1 R2e−m + w2m−1−2e
1 w2R

2e−m ⊗Rm−1

+
2m−2−2e∑

i=1

(
2m−1−2e

i

)(
2e−1
m−i

)
wi1R

m−i ⊗ w2m−1−2e−i
1 w2R

2e−m+i−1

+
(
2e−1
m

)
Rm ⊗ w2m−1−2e

1 w2R
2e−m−1 +

(
2e−1

2e+1−m

)
w2m−1−2e

1 R2e+1−m ⊗ w2R
m−2.

The first line is
2m−2−2e∑

i=1

(
2m−1−2e

i

)(
2e−1
m−i−1

)
times Y1,2 ⊗ Y1. This sum is easily seen to

be 0 mod 2. Similarly the sum on the third line is ≡ 0. We obtain that the expansion

in part (a) is, in bidegree (m,m− 1),

Y2 ⊗ Y1 + Y1,2 ⊗Rm−1 + (1 + δm,2e)R
m ⊗ Y1,2 + Y1 ⊗ Y2. (2.9)

We frequently use Lucas’s Theorem for evaluation of mod 2 binomial coefficients. For

example, here we use that
(
2e−1
i

)
≡ 1 for all nonnegative i ≤ 2e − 1.

Part (b) expands, in bidegree (m,m− 1), as

m−2∑
i=1

(
m−1
i

)(
m−2
m−i−2

)
wi1w

2
2R

m−i−2 ⊗ wm−1−i1 Ri

+
m−2∑
i=2

(
m−1
i

)(
m−2
m−i

)
wi1R

m−i ⊗ wm−1−i1 w2
2R

i−2

+w2
2R

m−2 ⊗ wm−11 +mwm−11 R× w2
2R

m−3.

For m 6= 2e−1 + 1,
m−2∑
i=1

(
m−1
i

)(
m−2
m−i−2

)
≡
(
2m−3
m−2

)
+ 1 ≡ 1

and
m−2∑
i=1

(
m−1
i

)(
m−2
m−i−2

)
≡
(
2m−3
m

)
+m ≡ δm,2e +m,

and so, similarly to (2.4), the expansion equals

Y1,2 ⊗ Y1 + (δm,2e +m)Y1 ⊗ Y1,2 + Y2 ⊗ Y1 +mY1 ⊗ Y2. (2.10)
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The expansion of part (c) of Theorem 2.5 is easier. It equals, in bidegree (m,m−1),

w1w
2e−1

2 ⊗ w2e−1

1 + w2e−1+1
1 ⊗ w2e−1

2 = Y1,2 ⊗ Y1 + Y1 ⊗ Y2. (2.11)

Now we show, one-at-a-time, that there are uniform homomorphisms ψ such that

φ⊗ ψ sends (2.9), (2.10), and (2.11) to 1.

If ψ : Hm−1(X)→ Z2 is a uniform homomorphism, applying φ⊗ ψ to (2.9) with a

even yields, using Proposition 2.8,

ψ(Y1) + ψ(Y0) + ε1ψ(Y1,2) + bψ(Y2). (2.12)

Here and in the following, εt denotes an element of Z2 whose value turns out to be

irrelevant. To have (2.12) be nonzero, we need a uniform homomorphism ψ satisfying

the system with the following augmented matrix. The columns represent ψ(Y0),

ψ(Y1), ψ(Y2), ψ(Y1,1), and ψ(Y1,2), respectively, and the second and third rows are

(2.6) and (2.7).  1 1 b 0 ε1 1
1 0 b ε2 0 0
1 1 b− 1 ε2 b− 1 0


Here we have noted that since a is even,

(
a−2
2

)
≡
(
a−1
2

)
mod 2. This system is easily

seen to have a solution, proving part (a) of Theorem 2.5.

Applying φ⊗ ψ to (2.10) with a odd and a > 1 similarly yields

ψ(Y1) + ε3ψ(Y1,2) +m(b+ 1)ψ(Y2).

Now ψ must satisfy the following system, which is also easily seen to have a solution. 0 1 m(b+ 1) 0 ε3 1
1 1 b ε4 b 0
1 0 b− 1 ε4 + 1 0 0


Here we have used that if a is odd, then

(
a−1
2

)
≡
(
a−2
2

)
+ 1. If a = 1, then the fourth

column and second row are removed, and again there is a solution.

Finally, applying φ ⊗ ψ to (2.11) with a odd leads to the following system for ψ,

which again has a solution. 0 1 b+ 1 0 0 1
1 1 b ε4 b 0
1 0 b− 1 ε4 + 1 0 0


Again, the fourth column and second row are omitted if a = 1, but there is still a

solution. This completes the proof of Theorem 2.5.
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3. Proof of 1.2 for genetic codes with a single gene of size 4

In this section we prove (1.3) for X = M(`) when the genetic code of ` is 〈{n, a+

b + c, a + b, a}〉 with n > a + b + c > a + b > a > 0. The analysis is similar to that

of 〈{n, a + b, a}〉 in the previous section, except that there are many more cases to

consider.

Proposition 2.1 easily implies

Proposition 3.1. For X as above, if 3 ≤ d ≤ n− 6, Hd(X) has basis

{Rd} ∪ {T di : 1 ≤ i ≤ a+ b+ c} ∪ {T di,j : 1 ≤ i ≤ a+ b, i < j ≤ a+ b+ c}

∪{T di,j,k : 1 ≤ i ≤ a, i < j ≤ a+ b, j < k ≤ a+ b+ c}.

For n−5 ≤ d ≤ n−3, these classes span Hd(X) but are subject to additional relations.

We adopt notation similar to that of the preceding proof, using θ : [a+ b+ c]→ [3]

sending intervals [1, a], (a, a+ b], and (a+ b, a+ b+ c] to 1, 2, and 3, respectively. As

before, we let Yθ(S) = TS, wθ(i) = Vi, and m = n− 3.

We begin by proving, similarly to Proposition 2.8,

Theorem 3.2. Let φ : Hm(X) → Z2 be the Poincaré duality isomorphism, and let

φW = φ(YW ). Then

φ1,1,1 = φ1,1,2 = φ1,1,3 = 1

φ1,2,2 = φ1,2,3 = 1

φ2,2 = φ2,3 = a− 1

φ1,3 = a+ b

φ1,1 = φ1,2 = a+ b+ c− 1

φ3 = (a− 1)(b− 1) +
(
a
2

)
φ2 = (a− 1)(b+ c) +

(
a
2

)
φ1 = (a− 1)(a+ b+ c− 1) +

(
a−1
2

)
+
(
b
2

)
+ (b− 1)(c− 1)

φ0 =
(
a
2

)
(a+ b+ c− 1) + (a− 1)(

(
b
2

)
+ (b− 1)(c− 1)).

Proof. Let S =

{(1), (2), (3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3)}
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denote the set of types of elements that can be deleted from [n − 1] yielding a long

subset L ⊂ [n− 1]. For example, (1, 2) refers to a set [n− 1]−{x, y} with x ≤ a and

a < y ≤ a + b. For U ∈ S and 1 ≤ i ≤ 3, let ui denote the number of i’s in U . For

example, if U = (1, 1, 2), then u1 = 2, u2 = 1, and u3 = 0. For each U ∈ S, there is a

relation RU of type (2.2), and φ(RU) is

φ0 +
∑
U ′∈S

(
a−u1
u′1

)(
b−u2
u′2

)(
c−u3
u′3

)
φU ′ = 0. (3.3)

For example, (2.7) is of this form, including only a and b (not c) and corresponding

to U = (1, 2), and with ψ instead of φ. The set of all equations (3.3) is a system of

13 homogeneous equations over Z2 in 14 unknowns φU ′ , and its nonzero solution is

the one stated in the theorem.

This solution was found manually by row reduction, and then checked by Maple,

noting that the system only depends on a mod 4, b mod 4, and c mod 2. The program

verified that the solution worked in all 32 cases.

There are special considerations when a = 1 or 2, or b = 1. For example, if b = 1,

then
(
b−2
2

)
should be 0 for us, but is 1 in most binomial coefficient formulas. But the

relations RU in which such coefficients appear are not present, and so the equations

(3.3) for these U need not be considered.

Let

S ′ = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3)}.
(3.4)

For ψ : Hm−1(X) → Z2 to be a uniform homomorphism with ψW = ψ(YW ), the

conditions that must be satisfied are, for U ∈ S ′,

ψ0 +
∑
U ′∈S

(
a−u1
u′1

)(
b−u2
u′2

)(
c−u3
u′3

)
ψU ′ = 0. (3.5)

The difference between the situation here and in the preceding proof is that relations

in Hm(X) allow sets L (in (2.2)) with |L| = m+ 1 = n−2, but relations in Hm−1(X)

do not.
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To prove (1.3), we seek ψ : Hm−1(X) → Z2 satisfying (3.5) for all U ∈ S ′, and

{v1, . . . , v2m−1} such that

(φ⊗ ψ)(
2m−1∏
i=1

(Dvi)) = 1. (3.6)

The classes vi that we will use depend on the mod 4 values of a and b, and c mod

2. First we deal with two cases that turn out to be exceptional. The following

easily-verified lemma will be useful.

Lemma 3.7.
(
A
2

)
+ AB + AC + BC +

(
B
2

)
≡ 0 mod 2 iff A + B ≡ 0 mod 4 or

A+B + 2C ≡ 1 mod 4.

The following result is our first verification of (3.6).

Proposition 3.8. Suppose a ≡ b ≡ 1 mod 4 and c ≡ 1 mod 2. The isomorphism

φ : Hm(X) → Z2 sends each Yi,j,k to 1 and other monomials to 0. There exists

ψ : Hm−1(X) → Z2 sending each Yi,j to 1 and other monomials to 0. Let ε = 1 if

m− 2 is a 2-power, and ε = 2 otherwise. Then

(φ⊗ ψ)((Dw1)
m−ε(Dw2)

2(Dw3)
3(DR)m−6+ε) = 1.

Proof. The φ-part is easily checked using Theorem 3.2, and the ψ-part follows from

Lemma 3.7. Indeed, (3.5) becomes(
a−u1
2

)
+ (a− u1)(b− u2) + (a− u1)(c− u3) +

(
b−u2
2

)
+ (b− u2)(c− u3),

which, by 3.7, is 0 for the prescribed a, b, c if u1 +u2 ≡ 2 mod 4 or u1 +u2 + 2u3 ≡ 3

mod 4, and this is easily verified to be true for the ten elements of S ′.
In the expansion of (Dw1)

m−ε(Dw2)
2(Dw3)

3(DR)m−6+ε, there are no terms with

repeated subscripts in either Y factor since it only involves one element of each type.

Also, there are no Y1,2,3 ⊗ Y1,2 or Y1,2,3 ⊗ Y2,3 terms, since (Dw2)
2 = w2

2 ⊗ 1 + 1⊗w2
2.

When ε = 2, the Y1,2,3 ⊗ Y1,3 terms come from

m−3∑
i=1

(
m−2
i

)(
m−4
m−i−4

)
wi1w

2
2w

2
3R

m−i−4 ⊗ wm−2−i1 w3R
i

+
m−3∑
i=1

(
m−2
i

)(
m−4
m−i−3

)
wi1w

2
2w3R

m−i−3 ⊗ wm−2−i1 w2
3R

i−1

= (
(
2m−6
m−4

)
+ 1)Y1,2,3 ⊗ Y1,3 = Y1,2,3 ⊗ Y1,3
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since m− 2 is not a 2-power. If m− 2 is a 2-power, the similar calculation, involving∑(
m−1
i

)(
m−5
m−i−4

)
and

∑(
m−1
i

)(
m−5
m−i−3

)
, gives just

(
2m−6
m−4

)
= 1.

The other exceptional case verifying (3.6) is similar.

Proposition 3.9. Suppose a ≡ 2 mod 4, b ≡ 4 mod 4, and c ≡ 1 mod 2. The

isomorphism φ : Hm(X) → Z2 sends Yi,j,k, Y2,2, and Y2,3 to 1, and other monomials

to 0. There exists ψ : Hm−1(X)→ Z2 sending each Yi,j to 1 and other monomials to

0. Let ε = 1 if m− 2 is a 2-power, and ε = 2 otherwise. Then

(φ⊗ ψ)((Dw1)
2(Dw2)

2(Dw3)
m−ε(DR)m−5+ε) = 1.

Proof. The only term in the expansion which is mapped nontrivially is Y2,3 ⊗ Y1,3. It

appears as
m−ε−1∑
i=1

(
m−ε
i

)(
m−5+ε
m−2−i

)
w2

2w
i
3R

m−2−i ⊗ w2
1w

m−ε−i
3 Ri+ε−3

with coefficient
(
2m−5
m−2

)
+
(
m−5+ε
m−2

)
+
(
m−5+ε
ε−2

)
= 1.

Let a (resp. b) denote the mod 4 value of a (resp. b), and c the mod 2 value of c. For

the other 30 cases of a, b, and c (or 90 if you consider deviations regarding whether

m or m− 1 is a 2-power), we use Maple to tell that an appropriate ψ can be found.

To accomplish this in all cases, several choices for the exponents of Dw1, Dw2, and

Dw3 are required. Possibly some choice of exponents might work in all cases, but we

did not find one.

Most of our results will be obtained using the following result.
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Proposition 3.10. If neither m nor m − 1 is a 2-power, then the component of

(Dw1)
α(Dw2)

2(Dw3)(DR)2m−4−α in bidegree (m,m− 1) equals(
2m−4−α

m

)
(Y0 ⊗ Y1,2,3 + Y1 ⊗ Y1,2,3)

+
(
2m−4−α
m−1

)
(Y1,2,3 ⊗ Y0 + Y1,2,3 ⊗ Y1 + Y3 ⊗ Y1,2 + Y1,3 ⊗ Y1,2)

+
(
2m−4−α
m−2

)
(Y2 ⊗ Y1,3 + Y1,2 ⊗ Y3)

+
(
2m−4−α
m−3

)
(Y2,3 ⊗ Y1 + Y1,2,3 ⊗ Y1 + Y1,3 ⊗ Y2 + Y1,3 ⊗ Y1,2)

+
(
2m−4−α
m−4

)
(Y1 ⊗ Y2,3 + Y1 ⊗ Y1,2,3).

If m is a 2-power, there is an additional term Y1 ⊗ Y1,2,3. If m − 1 is a 2-power,

Y1,2,3 ⊗ Y1 + Y1,3 ⊗ Y1,2 must be added to the above expansion.

Proof. The desired expression expands as
α∑
i=0

(
α
i

)(
2m−4−α
m−i−3

)
wi1w

2
2w3R

m−i−3 ⊗ wα−i1 Rm−1−α+i

+
α∑
i=0

(
α
i

)(
2m−4−α
m−i

)
wi1R

m−i ⊗ wα−i1 w2
2w3R

m−4−α−i

+
α∑
i=0

(
α
i

)(
2m−4−α
m−i−2

)
wi1w

2
2R

m−i−2 ⊗ wα−i1 w3R
m−2−α+i

+
α∑
i=0

(
α
i

)(
2m−4−α
m−i−1

)
wi1w3R

m−i−1 ⊗ wα−i1 w2
2R

m−3−α+i.

If neitherm norm−1 is a 2-power, the coefficients
(
2m−4
m−t

)
for t = 3, 0, 2, 1, which occur

as the sum of all coefficients on a line, are 0. Thus the four lines equal, respectively,(
2m−4−α
m−3

)
(Y2,3 ⊗ Y1 + Y1,2,3 ⊗ Y1) +

(
2m−4−α
m−α−3

)
(Y1,2,3 ⊗ Y0 + Y1,2,3 ⊗ Y1),(

2m−4−α
m

)
(Y0 ⊗ Y1,2,3 + Y1 ⊗ Y1,2,3) +

(
2m−4−α
m−α

)
(Y1 ⊗ Y2,3 + Y1 ⊗ Y1,2,3),(

2m−4−α
m−2

)
(Y2 ⊗ Y1,3 + Y1,2 ⊗ Y1,3) +

(
2m−4−α
m−α−2

)
(Y1,2 ⊗ Y3 + Y1,2 ⊗ Y1,3),(

2m−4−α
m−1

)
(Y3 ⊗ Y1,2 + Y1,3 ⊗ Y1,2) +

(
2m−4−α
m−1−α

)
(Y1,3 ⊗ Y2 + Y1,3 ⊗ Y1,2).

The sum of these is easily manipulated into the claimed form. If m is a 2-power, then(
2m−4
m

)
is odd, while if m − 1 is a 2-power,

(
2m−4
m−1

)
and

(
2m−4
m−3

)
are odd, yielding the

additional terms in the claim.

The following result follows immediately from Proposition 3.10 and Theorem 3.2.
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Corollary 3.11. Let qt =
(
2m−4−α
m−t

)
for 0 ≤ t ≤ 4, and ψW = ψ(YW ), where ψ :

Hm−1(X)→ Z2 is a uniform homomorphism. Then

(φ⊗ ψ)((Dw1)
α(Dw2)

2(Dw3)(DR)2m−4−α) (3.12)

= q1ψ0 + (q1 + q3a)ψ1 + q3(a+ b)ψ2 + q2(a+ b+ c− 1)ψ3

+(q1(ab+ 1 +
(
a
2

)
) + q3(a+ b))ψ1,2 + q2((a− 1)(b+ c) +

(
a
2

)
)ψ1,3

+q4((a− 1)(a+ b+ c− 1) +
(
a−1
2

)
+
(
b
2

)
+ (b− 1)(c− 1))(ψ2,3 + ψ1,2,3)

+q0((a+
(
a
2

)
− 1)(a+ b+ c− 1) +

(
a−1
2

)
+ a
(
b
2

)
+ a(b− 1)(c− 1))ψ1,2,3.

Lemma 3.13. If m = 2e +m′ with 2 ≤ m′ ≤ 2e − 1 and α = 2m′ − 3 and 0 ≤ t ≤ 4,

then
(
2m−4−α
m−t

)
≡ 1 mod 2.

Proof. The top of the binomial coefficient is 2e+1− 1, while the bottom is ≤ 2e+1− 1.

The first of several verifications of (1.3) for multiple values of (a, b, c) appears in

the following result.

Theorem 3.14. If m = 2e +m′ with 2 ≤ m′ ≤ 2e − 1, then

(Dw1)
2m′−3(Dw2)

2(Dw3)(DR)2
e+1−1 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.14 column of Table 3.23.

Proof. This is the case described in Lemma 3.13, so that q0 = · · · = q4 = 1 in (3.12).

We need values of ψW such that the RHS of (3.12) equals 1, and (3.5) is satisfied

for all U ∈ S ′. (Recall that the relationship of U to (3.5) is that ui is the number

of occurrences of i in U .) Altogether this is 11 equations over Z2 in 14 unknowns.

The coefficients of the equations depend only on a, b, and c. It is a simple matter

to run Maple on these 32 cases, and it tells us that there is a solution in exactly the

claimed cases. The Maple program, input and output, can be seen at [2]. The two

cases, (a, b, c) = (1, 1, 1) and (2, 4, 1), considered in Propositions 3.8 and 3.9 are not

included in Table 3.23 because they did not yield a solution in any of the situations

whose results appear as a column of that table. The special situation when a = 1 or

2 or b = 1 is not a problem, exactly as in the proof of Theorem 3.2.
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The next result is very similar. The only difference is a small change in the exponent

of Dw1 (and hence also of DR). This changes the values of qt.

Theorem 3.15. If m = 2e +m′ with 2 ≤ m′ ≤ 2e − 1, then

(Dw1)
2m′−2(Dw2)

2(Dw3)(DR)2
e+1−2 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.15 column of Table 3.23.

Proof. In this case, qt = m − t − 1. That is the only change from the proof of

Theorem 3.14. Here we require that solution must exist both when q = (1, 0, 1, 0, 1)

and (0, 1, 0, 1, 0), covering either parity of m. Here and later q = (q0, q1, q2, q3, q4).

The third result also just involves a change in the exponent of Dw1. This time

qt =
(
m−t+2

2

)
, so we require a solution for all four of the vectors q, corresponding to

mod 4 values of m.

Theorem 3.16. If m = 2e +m′ with 2 ≤ m′ ≤ 2e − 1, then

(Dw1)
2m′−1(Dw2)

2(Dw3)(DR)2
e+1−3 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.16 column of Table 3.23.

We can fill in the missing cases by changing the exponent of Dw2. We begin with

the following analogue of Proposition 3.10, whose proof is totally analogous.

Proposition 3.17. If neither m nor m − 1 is a 2-power, then the component of

(Dw1)
α(Dw2)(Dw3)(DR)2m−3−α in bidegree (m,m− 1) equals(
2m−3−α

m

)
(Y0 ⊗ Y1,2,3 + Y1 ⊗ Y1,2,3)

+
(
2m−3−α
m−1

)
(Y1,2,3 ⊗ Y0 + Y1,2,3 ⊗ Y1 + Y3 ⊗ Y1,2 + Y1,3 ⊗ Y1,2 + Y2 ⊗ Y1,3 + Y1,2 ⊗ Y1,3)

+
(
2m−3−α
m−2

)
(Y2,3 ⊗ Y1 + Y1,2,3 ⊗ Y1 + Y1,3 ⊗ Y2 + Y1,3 ⊗ Y1,2 + Y1,2 ⊗ Y3 + Y1,2 ⊗ Y1,3)

+
(
2m−3−α
m−3

)
(Y1 ⊗ Y2,3 + Y1 ⊗ Y1,2,3).

If m is a 2-power, there is an additional Y1 ⊗ Y1,2,3.

We do not need to use this proposition when m− 1 is a 2-power.
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Theorem 3.18. If m = 2e +m′ with 2 ≤ m′ ≤ 2e − 1, then

(Dw1)
2m′−1(Dw2)(Dw3)(DR)2

e+1−2 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.18 column of Table 3.23.

Proof. Let q′t =
(
2m−3−α
m−t

)
for 0 ≤ t ≤ 3. Using Proposition 3.17 and Theorem 3.2, we

find that

(φ⊗ ψ)((Dw1)
α(Dw2)(Dw3)(DR)2m−3−α) (3.19)

= q′1ψ0 + (q′1 + q′2a)ψ1 + q′2(a+ b)ψ2 + q′2(a+ b+ c− 1)ψ3

+(q′1(ab+ 1 +
(
a
2

)
) + q′2(a+ b))ψ1,2

+(q′1(a(b+ c) + a− 1 +
(
a
2

)
) + q′2(a+ b+ c− 1))ψ1,3

+q′3((a− 1)(a+ b+ c− 1) +
(
a−1
2

)
+
(
b
2

)
+ (b− 1)(c− 1))(ψ2,3 + ψ1,2,3)

+q′0((a+
(
a
2

)
− 1)(a+ b+ c− 1) +

(
a−1
2

)
+ a
(
b
2

)
+ a(b− 1)(c− 1))ψ1,2,3.

Similarly to Lemma 3.13, with α = 2m′−1, we have
(
2m−3−α
m−t

)
≡ m− t−1 mod 2,

and the result follows similarly to the three previous ones, having Maple check whether

there is a solution to the system of 11 equations in 14 unknowns, whose first equation

is that the RHS of (3.19) equals 1 and others are, as before, (3.5) for each U ∈ S ′.
This time a solution is required for both q′ = (0, 1, 0, 1) and (1, 0, 1, 0).

Referring to Table 3.23 and Theorems 3.14, 3.15, 3.16, and 3.18, accompanied by

Propositions 3.8 and 3.9, we find that, when neither m nor m− 1 is a 2-power, (1.3)

is satisfied for all (a, b, c), establishing Theorem 1.2 when neither m nor m − 1 is a

2-power. Next we handle the case when m = 2e.

Theorem 3.20. If m = 2e, then, for 1 ≤ ε ≤ 3,

(Dw1)
2e−ε(Dw2)

2(Dw3)(DR)2
e+ε−4 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.20(ε) column of Table 3.23.

Proof. Because of the change due to m = 2e noted in Proposition 3.10, the expression

in Corollary 3.11 has an extra ((a−1)(a+ b+c−1)+
(
a−1
2

)
+
(
b
2

)
+(b−1)(c−1))ψ1,2,3

added. The vectors q are (0, 1, 1, 1, 1), (0, 0, 1, 0, 1), and (0, 0, 0, 1, 1) for ε = 3, 2, 1,
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respectively. The other 10 equations for the ψW ’s are as before. Maple tells us when

the system has a solution.

The next result is the 2e-analogue of Theorem 3.18. As shown in Table 3.23, this,

Theorem 3.20, and Propositions 3.8 and 3.9 imply Theorem 1.2 when m = 2e.

Theorem 3.21. If m = 2e, then

(Dw1)
2e−1(Dw2)(Dw3)(DR)2

e−2 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.21 column of Table 3.23.

Proof. Because of the change due to m = 2e noted in Proposition 3.17, the expression

in (3.19) has an extra ((a−1)(a+ b+ c−1) +
(
a−1
2

)
+
(
b
2

)
+ (b−1)(c−1))ψ1,2,3 added.

The vector q′ is (0, 0, 1, 0), and the other 10 equations for the ψW ’s are as before.

Maple tells us when the system has a solution.

Finally, we handle the case m = 2e + 1.

Theorem 3.22. If m = 2e + 1, then, for ε = ±1,

(Dw1)
2e+ε(Dw2)

2(Dw3)(DR)2
e−ε−2 6= 0 ∈ H2m−1(X ×X)

for the values of a, b, and c which have an × in the 3.22(ε) column of Table 3.23.

Proof. Because of the change due to m = 2e + 1 noted in Proposition 3.10, the

expression in Corollary 3.11 has an extra ψ1 + (a + b)ψ1,2 added. The vectors q are

(0, 0, 0, 0, 1) and (0, 0, 1, 1, 1) for ε = 1 and −1, respectively. The other 10 equations

for the ψW ’s are as before. Maple tells us when the system has a solution.
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Table 3.23.

m 6= 2e, 2e + 1 m = 2e m = 2e + 1

a b c 3.14 3.15 3.16 3.18 3.20(3) 3.20(2) 3.20(1) 3.21 3.22(1) 3.22(−1)

1 1 2 × × ×

1 2 1 × × × ×

1 2 2 × × × × ×

1 3 1 × × × × × × × ×

1 3 2 × × × × × × × ×

1 4 1 × × × × × × ×

1 4 2 × × × × × × × ×

2 1 1 × × × × × × ×

2 1 2 × × × × ×

2 2 1 × × × × × × ×

2 2 2 × × × × × × × ×

2 3 1 × × × ×

2 3 2 × × × × × × ×

2 4 2 × × × × ×

3 1 1 × × × × × × × ×

3 1 2 × × × × × × ×

3 2 1 × × × × × × × × ×

3 2 2 × × × × × × × ×

3 3 1 × × ×

3 3 2 × × × × × × × × ×

3 4 1 × × × × × × × × ×

3 4 2 × × × × × × × × ×

4 1 1 × × × × × × × × × ×

4 1 2 × × × × × × × ×

4 2 1 × × × × × × ×

4 2 2 × × × × × × × ×

4 3 1 × × × × × × × × × ×

4 3 2 × × × × × × × × ×

4 4 1 × × × × × × × × × ×

4 4 2 × × × × × × × × × ×
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The Maple program that performed all these verifications can be viewed at [2]. We

conclude that

Theorem 3.24. If X = M(`) with genetic code 〈{n, a + b + c, a + b, a}〉, then (3.6)

holds for some set of 2m− 1 classes vi.

Proof. Table 3.23 shows that for all (a, b, c) except (1, 1, 1) and (2, 4, 1) one of the tab-

ulated theorems applies, while the two exceptional cases are covered in Propositions

3.8 and 3.9.
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