
ISOMORPHISM CLASSES OF CUT LOCI FOR A CUBE

DONALD M. DAVIS AND MANYI GUO

Abstract. We prove that a face of a cube can be optimally partitioned into
193 connected sets on which the cut locus, or ridge tree, is constant up to
isomorphism as a labeled graph. These are 60 connected open sets, curves
bounding them, and intersection points of curves. Polynomial equations for
the curves are given. Sixteen pairs of sets support the same cut locus class.
We present the 177 distinct cut locus classes.

1. Introduction

The cut locus, or ridge tree, of a point P on a convex polyhdedron is the closure of

the set of points Q for which there is more than one shortest path from P to Q. Each

cut locus is a tree whose leaves are corner points1 of the polyhedron. In [1] and [2],

methods were developed for determining the cut locus of a point, which we describe

in Section 3 and utilize.

The cut locus of P varies continuously with P unless P is a corner point of the

polyhedron, but its combinatorial structure can change abruptly. We think of a

cut locus as a graph with some vertices labeled by corner points of the polyhedron.

We define an equivalence relation for these labeled graphs by edge-preserving vertex

bijections that preserves labels, and denote by L the equivalence class of a cut locus

L.

In this paper, we consider the cut loci for a cube and find a complete decomposition

of a face of a cube into connected subsets on which L is constant. The subsets are

connected open sets, curves bounding these sets, and single points where the curves

intersect. These are accurately rendered in Figure 1.1; Figure 2.1 gives an expanded

version of regions in the left quadrant of 1.1. We find that there are 193 connected
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subsets altogether, but of these there are 16 pairs which have the same L and so there

are 177 distinct L on a face of a cube.

Figure 1.1. Decomposition of a face into subsets on which L is constant

In Section 2, we give a precise statement of results, including equations of the

curves bounding the regions, and the labeled graphs for a representative set of L. In

Section 3, we present some preliminary information and tools from [2] and [1] needed

in our work. Section 5 sketches a proof that the regions and isomorphism classes of

their cut loci are as described, and in Section 6, we complete the proof.

In Figure 1.2, we picture a cube and a typical cut locus on it. This shows the

numbering of the corner points of the cube that we will use throughout. We use the

back face of that cube as the domain for our points P .
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Figure 1.2. A cube with labeled corner points, and the cut locus for the
middle point of an edge highlighted

One motivation for this work was [3], which considered geodesic motion-planning

rules on a cube. Another was [1], which considered bounds for the number of equiv-

alence classes of cut loci on a convex polyhedron.

2. Statement of results

In this section, we state our main result, an optimal decomposition of a face of a

cube into 193 connected subsets on which the isomorphism class L of the cut locus

is constant, together with a depiction of these bL. Proofs of all claims will appear in

Sections 5 and 6. Because of the omnibus nature of our result, we do not organize it

into “Theorems.”

We show that a face of the cube is composed of 60 connected open sets on which

L is constant, together with 48 curves which bound these regions. Except for the

boundary of the square and its diagonals, each of these curves is given by a 2-variable

polynomial equation of degree 2 or 3 with integer coefficients. Some of these curves

have constant L, while others are divided into two or three adjacent portions, on each

of which L is constant, yielding 96 curve portions with constant L. There are 58

distinct L’s on the regions and 86 on the curves. There are 37 points of intersection

of these curves, giving 33 additional L.

We find it convenient to use 0 ≤ x ≤ 8 and −4 ≤ y ≤ 4 as the coordinates

of P = (x, y) in our face. Figure 2.1 depicts the 15 open regions in the quadrant

Q1 = {(x, y) : 0 ≤ x ≤ 4, |y| ≤ 4 − x}. In Figure 2.1, the x-axis is stretched by a

factor of nearly 5 in order to better display the regions. Figure 1.1 depicts the whole

square, illustrating how regions in the other three quadrants are copies of the regions
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in the quadrant Q1 rotated around the center of the square. We will explain how the

L in the regions in these quadrants are obtained by permuting the corner numbers

1-8 in L.

Figure 2.1. Regions in quadrant Q1

In Figure 2.2, we present the L for points in regions A-I in Figure 2.1. The

L in the primed regions in Figure 2.1 are obtained by applying the permutation

τ = (1 4)(2 3)(5 8)(6 7) to the corner numbers in the L of the corresponding unprimed

region D-I. Note that the graphs which appear in Figure 2.2 represent isomorphism

classes of labeled graphs, and so whether an edge points to the left or right is irrelevant,

as is the vertical orientation of the graph.
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Figure 2.2. L in regions.
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Each region R in the top quadrant in Figure 1.1 is obtained from the corresponding

region R0 in quadrant Q1 by a clockwise rotation of π/2 around the center of the

square. The L for R is obtained from that of R0 by applying the permutation σ =

(1 4 3 2)(5 8 7 6) to the corner numbers at vertices. Similarly, regions along the right

edge are a π-rotation of R0 and have their L obtained using the permutation σ2 =

(1 3)(2 4)(5 7)(6 8). Finally, a clockwise rotation of 3π/2 applies σ3 = (1 2 3 4)(5 6 7 8)

to the numbers at vertices of L. One can check that, for the 15 regions R0 in Q1, the

L for σiR0, 0 ≤ i ≤ 3, are distinct except that σ2+εLA = σεLA for ε = 0, 1, yielding

58 distinct L for the regions on the face, each L having six degree-3 vertices. The

notation LA refers to the L of points in the region A.

There are five curves and their vertical reflections which bound pairs of regions in

Figure 2.1. A single curve usually bounds more than one pair of regions. Its L will

be different for different pairs. In every case, the L for the curve portion is obtained

by collapsing to a point one edge of the L for each region which it bounds.

For each curve, we list in (2.3) the pairs of regions which it bounds, followed by its

equation. Then in Figure 2.4, we present the L for the various curve portions. For

example, the first curve, which appears almost horizontal in Figure 1.1 but is actually

an arc of a circle with large radius, bounds regions B and D, and then has a short
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portion bounding regions E and I, and its L for each of these portions is presented in

Figure 2.4. The intersection point of these two portions has a different L, which will

be described, along with its coordinates, later in this section.

BD,EI x2 + y2 − 24y + 16 = 0 (2.3)

DE,BI, CI ′ y3 + (3x+ 12)y2 + (x2 + 40x− 16)y + 3x3 − 44x2 + 304x− 192 = 0

EF y3 + (x− 12)y2 + (x2 + 8x− 16)y + x3 − 20x2 − 240x+ 192 = 0

FG,HA,CH ′ x3 − 4x2 + (y2 + 8y − 80)x− 4y2 + 64 = 0

GA,FH x3 − 12x2 + (y2 − 24y + 112)x+ 4y2 − 64 = 0

Figure 2.4. L on curves.
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The vertical reflection of the curves is obtained by replacing y by −y in the equa-

tions, and their L is obtained using the permutation τ = (1 4)(2 3)(5 8)(6 7), as

before. For the other three quadrants, the equations can be modified in an obvi-

ous way, and the L obtained using the same permutations as were used for regions.

One can check that, for the 11 curve segments S in Figure 2.4 and for ε = 0, 1 and

0 ≤ i ≤ 3, the L for τ εσiS are distinct except that τ εσ2+iLGA = τ εσiLHA. This gives

88− 8 distinct L’s for curve portions. All of these L’s have five degree-3 vertices.

In addition, there are 6 more L’s, coming from the edges and half-diagonals of the

square. The entire left edge of our face has constant L, as does the half diagonal
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h connecting the center of the face with the upper left corner. These are shown

in Figure 2.5. These are the first cases where a corner point does not appear at a

leaf, but rather at a degree-2 vertex of the cut locus. Applying the permutations

σ, σ2, and σ3 described earlier gives the L’s on the other edges and half diagonals.

However, σ2+εLh = σεLh. Combining with those described above yields 86 distinct

L’s on portions of curves.

Figure 2.5. L on left edge and upper-left half diagonal.
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Not including the y-axis, Figure 2.1 has eight intersection points of curves. Three

below the x-axis are obtained by vertical reflection, and their L is obtained using the

usual permutation τ . We list the other five, denoting them by the regions abutting

them, and include their coordinates.

BDEI (0.6413, 0.7045)

EFHCI (0.7085, 0.7085)

FGHA (0.8, 1.6)

BII ′C (0.6989, 0)

CHH ′A (0.7757, 0)

More precisely, the 0.7085 is 6− 2
√
7, while the 0.7045, 0.6989, and 0.7757 are roots

of the polynomials 37y4 − 816y3 + 304y2 − 3456y + 2560, 3x3 − 44x2 + 304x − 192,

and x3 − 4x2 − 80x+64, respectively. The L for the five vertices are shown in Figure

2.6. The BD curve intersects the y-axis at (0, 0.685), but this point does not give a

new L, since L is constant on the y-axis (for |y| < 4).
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Figure 2.6. L for intersection points.
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Including τL for the first three L in Figure 2.6 and applying σi, 0 ≤ i ≤ 3 to all

gives 32− 4 distinct L, as τ εσ2+iLFGHA = τ εσiLFGHA.

Finally, there are vertices at the center of the face and at each corner. The L for

the center and the top-left corner are presented in Figure 2.7. Those for the other

corners are obtained using the usual permutations.

Figure 2.7. L for special points.
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3. Background

In this section we explain how the method for finding cut loci of convex polyhedra

developed in [1] and [2] applies to a cube. This involves star unfolding and Voronoi

diagrams.

We consider the cube with corner points numbered as in Figure 1.2, and let P be a

point on the back (5678) face. In a planar model M of all faces of the cube except the

front (1234) face, choose a shortest path connecting P to each corner point. These

are called cuts. See Figure 3.1.
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Figure 3.1. Example of cuts with respect to P
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These decompose M as the union of eight polygons, with P at a vertex of each,

and edges 12, 23, 34, 41 and 15, 26, 37, and 48 at far ends of the polygons. The star

unfolding of P is obtained by first gluing to the 1234 square the polygons with far

edges 12, 23, 34, and 41. This will expose new edges 15, 26, 37, and 48, and we then

glue the other four polygons to the corresponding edges. See Figure 3.2. This yields

a polygon with eight vertices corresponding to corner points of the cube, and eight

corresponding to occurrences of the point P , which we number as in Figure 3.2. This

is the star unfolding, S, of the point P .

Figure 3.2. A star unfolding S
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Recall that our coordinates for the 5678 face of the cube are 0 ≤ x ≤ 8 and

−4 ≤ y ≤ 4. We will initially consider points P in the quadrant Q1 given by
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−4 ≤ y ≤ 4 and 0 ≤ x ≤ 4 − |y|. Points in other quadrants will be considered later

by rotating the cube.

We use (v, w) as the coordinate system for the plane containing S, with (0, 0) at

the midpoint of segment 2-3 in Figure 3.2, and sides of the two squares having length

8. The coordinates of the points labeled 1-8 are, respectively, (−8, 4), (0, 4), (0,−4),

(−8,−4), (−8, 12), (8, 4), (8,−4), and (−8,−12). The coordinates (vα, wα) of the

points Pα are as in (3.3).

P1 = (−16− x,−y), P5 = (16− x,−y),

P2 = (−12− y, 12 + x), P6 = (12− y,−12 + x), (3.3)

P3 = (−8 + x, 16 + y), P7 = (−8 + x,−16 + y),

P4 = (12 + y, 12− x), P8 = (−12 + y,−12− x).

For each point Pα, 1 ≤ α ≤ 8, its Voronoi cell Cα is the set of points Q in S such

that

d(Q,Pα) ≤ d(Q,Pβ)

for 1 ≤ β ≤ 8. The points of S which lie in more than one Cα comprise the cut locus

LP of P . In Figure 3.4, we show the Voronoi cells and cut locus of the point P in

Figure 3.1.

Figure 3.4. Voronoi cells and cut locus of P
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All segments in the cut locus are portions of perpendicular bisectors ⊥α,β of the

segments joining Pα and Pβ. One needs to consider how various ⊥α,γ intersect to

decide when a portion of ⊥α,β is closer to Pα and Pβ than to other Pγ’s. An example

of this is discussed in Section 4.

4. Determination of a cut locus

We used Maple to help us find the cut locus for many points in quadrant Q1. We

illustrate here with the top half of the cut locus of the point P = (x, y) = (1.5, 0.5).

Substituting these values into the equations (3.3), we obtain the coordinates of the

points Pα = (vα, wα) for 1 ≤ α ≤ 8. The equation of the perpendicular bisector, ⊥α,β,

of the segment connecting points Pα and Pβ isw =
wα + wβ

2
+

vα − vβ
wβ − wα

(
v − vα + vβ

2

)
{α, β} ≠ {1, 5}

v = −x {α, β} = {1, 5}.
(4.1)

Maple plots a selected batch of these lines ⊥α,β in a specified grid. The grid in

Figure 4.2 is [−3.5, 0.5]× [0, 3]. Here we have included just those relevant for the top

half of the cut locus, which appears in red. Other lines such as ⊥2,4 and ⊥2,5 would

usually be considered for possible relevance. Trying to do this sort of analysis for the

top and bottom halves of the cut locus together leads to an unwieldy collection of

perpendicular bisectors. In Section 6, we show that it suffices to consider the top and

bottom parts separately. When crucial intersection points are very close together, we

can change the grid to effectively zoom in.
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Figure 4.2. Finding a cut locus.
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Points equidistant from Pα and Pβ lie on ⊥α,β. In Figure 4.2, the line ⊥α,β is

annotated with α on one side and β on the other, indicating the side closer to Pα or

Pβ. The Voronoi cell for a point Pα is bounded by portions of lines ⊥α,β for various β,

with α on the cell side of each ⊥α,β. For example, the Voronoi cell for P3 is bounded

by portions of ⊥3,2, ⊥3,1, ⊥3,5, and ⊥3,4, reading from left to right in Figure 4.2.

Although we use the various ⊥α,β to determine the cut loci, the eventual description

of the cut locus is in terms of the corner points of the cube at certain vertices of the

cut locus. As seen in Figure 3.2, the corner points on lines ⊥1,2, ⊥2,3, ⊥3,4, and ⊥4,5

are 1, 5, 2, and 6, respectively, and so the top half of the cut locus of the point

P = (1.5, 0.5) is as depicted in Figure 4.3.

Figure 4.3. Top half of a cut locus.
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5. Proofs

In this section, we show how the regions and curves and their cut loci are obtained.
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The coordinate systems are as described in Section 3. Let [8] = {1, 2, 3, 4, 5, 6, 7, 8}.
For P = (x, y) ∈ Q1 and α ∈ [8], let Pα be the point in the star unfolding described

earlier. Its coordinates (vα, wα) are linear expressions, (3.3), in x and y. In Figure

3.2, we depict a typical star unfolding. The vertices P1, . . . , P8 are the focal points for

the Voronoi cells, while the vertices with numbered labels correspond to the corner

points of the cube.

For α, β ∈ [8], let ⊥α,β (P ) denote the perpendicular bisector of the segment con-

necting Pα and Pβ. Its equation is (4.1). Note that ⊥α,α+1 has as its extreme point

in the star unfolding the corner point 1, 5, 2, 6, 7, 3, 8, and 4, for α = 1, . . . , 8.

Although our results about L are described in terms of the corner points, our work

is done in terms of the α.

For S = {α, β, γ} ⊂ [8], let πS(P ) denote the intersection of ⊥α,β (P ) and ⊥β,γ (P )

(and ⊥α,γ (P ), as πS(P ) is the center of the circle passing through Pα, Pβ, and Pγ.).

Let LP denote the cut locus of P . It is formed from portions of various ⊥α,β (P )

which are closer to Pα and Pβ than to any other Pγ. The degree-3 vertices of LP are

certain πS(P ). From now on, we will usually omit the (P ) and the set symbols in

subscripts.

A transition from one isomorphism class of LP to another as P varies will occur

when πα,β,γ passes through another ⊥β,δ. This is illustrated in Figure 5.1. The

references there to t and t0 will be used in Section 6. In the left side of the figure,

πα,β,γ is part of LP since it is closer to Pα, Pβ, and Pγ than to any other P -point, but

as P changes and πα,β,γ moves across ⊥β,δ, it is now closer to Pδ, and so is not part

of LP .
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Figure 5.1. Transition.
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We will show in Section 6 that this type of transition is the only way to change from

one L to another.

We assume first that {α, β, γ} does not contain both 1 and 5. Then the v-coordinate

of πα,β,γ is found by equating the right hand side of (4.1) for (α, β) and (β, γ), using

the formulas for vα, wα, etc., in terms of x and y given in (3.3). This yields a formula

for v = vα,β,γ in terms of x and y.

The relationship between x and y such that πα,β,γ and πα,β,δ coincide (and hence

a transition might occur) is the equation vα,β,γ = vα,β,δ. This yields a fourth-

degree equation. We let Maple do the work. For example, we find the equation

for (α, β, γ, δ) = (2, 3, 4, 5) as follows.

v[1]:=-16-x: w[1]:=-y: v[2]:=-12-y: w[2]:=12+x: v[3]:=-8+x: w[3]:=16+y:

v[4]:=12+y: w[4]:=12-x: v[5]:=16-x: w[5]:=-y:

a:=2: b:=3: c:=4: d:=5:

A:=solve((w[a]+w[b])/2+(v[a]-v[b])/(w[b]-w[a])(v-(v[a]+v[b])/2)

=(w[a]+w[c])/2+(v[a]-v[c])/(w[c]-w[a])(v-(v[a]+v[c])/2),v):

B:=solve((w[a]+w[b])/2+(v[a]-v[b])/(w[b]-w[a])(v-(v[a]+v[b])/2)

=(w[a]+w[d])/2+(v[a]-v[d])/(w[d]-w[a])(v-(v[a]+v[d])/2),v):
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simplify(numer(A)denom(B)-numer(B)denom(A))

Note that the expressions for A and B will be rational expressions, and so the last

line gives a polynomial which equals 0.

For (a, b, c, d) = (2, 3, 4, 5), it yields

(y3+(3x+12)y2+(x2+40x−16)y+3x3−44x2+304x−192)(4+y−x)(= 0).

The cubic factor is the second of the five equations listed in (2.3). If we use (a, b, c, d) =

(1, 2, 3, 4), we obtain the vertical reflection of the EF curve of (2.3).

For {1, β, γ, 5}, since ⊥1,5 is the line v = −x, we do A above for 1, b, and c, omit

B, and simplify (numer(A)+x·denom(A)). This yields (beginning a practice of often

omitting commas)

1235 x3 − 4x2 + (y2 + 8y − 80)x− 4y2 + 64(= 0)

1245 x(x2 + y2 + 24y + 16)(= 0) (5.2)

1345 x3 − 12x2 + (y2 + 24y + 112)x+ 4y2 − 64(= 0).

For each of these five cases, if 2, 3, and 4 are replaced by 8, 7, and 6, respectively,

the equation is obtained by replacing y by −y. Altogether we have ten equations.

Compare with equations (2.3).

We describe LP for P in the top half of Q1 by the sets S for which πS is a degree-3

vertex of LP . Later in this section we will explain how we translate this description to

the description involving corner points of the cube, which appeared in Section 2. For

example, the case P = (1.5, 0.5) considered in Section 4 has πS for S = 123, 135, and

345 in its top half. Maple plotting of perpendicular bisectors shows that the bottom

half of this LP is essentially a flip of the top half, so has πS for S = 178, 157, and

567.

In Section 6, we show that the only possible transitions from one L to another are

of the type illustrated in Figure 5.1, where an αβγδ intersection bounds one region

whose L has πα,β,γ and πα,γ,δ vertices and another with πα,β,δ and πβ,γ,δ. The point

is that the 4-set2 defining the bounding curve must have two 3-subsets in each of the

regions on either side of it. So, for example, the 1568 curve could not bound a region

2We use this to denote a set with 4 elements.
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containing L(1.5,0.5) because there are not two of the six 3-sets S for L(1.5,0.5) listed in

the previous paragraph which are contained in {1, 5, 6, 8}.
Of the ten equations determined above, all except the ones corresponding to 1568

and 1245 intersect the top half of Q1 in a curve which we denote as x = θαβγδ(y) for

0 ≤ y ≤ 4. Each y has three x values as solutions, but we neglect those that are

complex or outside the region 0 ≤ x ≤ 4−y. The equation for 1245 does not intersect

this region, and the one for 1568 does so only for 0.685 ≤ y ≤ 1.07.

Maple shows that, for 1.6 < y < 4,

θ1345(y) < θ2345(y) < θ1578(y) < θ1678(y) < θ5678(y) < θ1234(y) < θ1235(y) < θ1567(y),

and that for 0 ≤ y ≤ 4 all eight of these curves satisfy 0 ≤ θαβγδ(y) ≤ 0.83. For P

in quadrant Q1, LP has the type of the case P = (1.5, 0.5) considered above, with

degree-3 vertices corresponding to S = 123, 135, 345, 178, 157, and 567, until a

transition occurs. This will define region A in Figure 2.1.

Now let 1.6 < y < 4. Since there are no αβγδ intersections of the eight types in the

above string of inequalities in the region R = {(x, y) : 0 ≤ y ≤ 4, 0.83 ≤ x < 4− y},
and, as noted above, a 1568 intersection cannot affect L(1.5,0.5), we conclude that for

all (x, y) in R, L(x,y) = L(1.5,0.5), with degree-3 vertices 123, 135, 345, 178, 157, and

567. For this, we also need an observation in Section 6 that no other αβγδ can have

an effect.

As we move from the right, when the point P = (θ1567(y), y) is encountered, there

is a transition from 157 and 567 to 156 and 167. This is region G, with 123, 135, 345,

178, 156, and 167.

Next we encounter P = (θ1235(y), y), and this causes a transition to 125, 235, 345,

178, 156, and 167. This is region F . The next two potential transitions at 1234

and 5678 do not effect a change, because neither of these 4-sets contain two 3-subsets

which are vertices of region-F cut loci. Next at P = (θ1678(y), y) we have a transition,

changing 178 and 167, leading to region E described by 125, 235, 345, 168, 156, and

678. The next potential transition, 1578, does not effect a change, but then 2345

does, to 125, 234, 245, 168, 156, and 678 in region D. Finally, 1345 does not effect a

change because it does not have two 3-sets of region D.

Before we discuss other ranges of values of y, we point out that when a curve is

crossed, it gives a degree-4 vertex of the cut locus, as shown in the middle part of
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Figure 5.1. Thus, for points P on the curve GA separating regions G and A, LP

has vertices abutting regions 123, 135, 345, 178, and 1567 of the star unfolding, and

similarly for points on the other curves crossed in the above analysis. We also note

that θ1567(1.6) = 0.8 = θ1235(1.6).

The same procedure is followed for other intervals of values of y, arranging the

4-sets S according to the order of θS(y), and then working from right-to-left to see

whether the transitions are effective, i.e., whether S contains two 3-sets which are

vertices of the region under consideration. For 0.7085 < y < 1.6, the only change

from the above order which causes a different transition is that θ1235(y) is now greater

than θ1567(y), so the 1235 change takes place first, leading to region H with vertices

125, 235, 345, 157, 567, and 178.

The most interesting point is (6 − 2
√
7, 6 − 2

√
7) ≈ (.7085, .7085), which lies on

all of θ1567, θ1678, θ1568, θ1578, and θ5678.
3 These five curves reverse their order at

y = 6− 2
√
7. For 6− 2

√
7 < y < .715,

θ2345(y) < θ1578(y) < θ1678(y) < θ5678(y) < θ1567(y) < θ1568(y) < θ1234(y) < θ1235(y),

which has the transitions described in the preceding paragraph, but for .7045 < y <

6− 2
√
7,

θ2345(y) < θ1568(y) < θ1567(y) < θ5678(y) < θ1678(y) < θ1578(y) < θ1234(y) < θ1235(y),

which has a different order of transitions. Let .7045 < y < 6 − 2
√
7. After the 1235

change, the next one is 1578, leading to region C with vertices 125, 235, 345, 158,

567, and 578. The next transition is due to 5678, leading to region I with vertices

125, 235, 345, 158, 568, and 678. The next transition is due to 1568, which brings us

into region E, with vertices 125, 235, 345, 168, 156, and 678, which were already seen

when considering larger values of y. Finally, a 2345 transition brings us into region

D as above.

The 2345 and 1568 curves intersect at y ≈ 0.7045, so for y < 0.7045, the 2345

transition precedes the 1568 transition, leading to region B with vertices 125, 234,

3To see this remarkable fact, recall that these five curves are obtained by re-
placing y by −y in the polynomials in (5.2) and the paragraph preceding it. After
doing this, let y = x. Each of the resulting polynomials equals x2 − 12x+ 8 times
a linear factor.
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245, 158, 568, and 678. For y > .685, there will be a 1568 transition into region D,

but for y < .685, there is no 1568 transition since θ1568(y) < 0 if y < .685.

This completes the description of the regions of the top half of quadrant Q1 with

constant L, described in terms of the Voronoi cells. Now we translate this description

into one which has the cube’s corner numbers at the leaves, which is the description

given in Section 2, and is needed for giving permuted descriptions in other quadrants.

In Figure 5.3, we show how the top half of the cut loci appear in terms of Voronoi

cells, and list the regions in Figure 2.1 in which they appear. Each edge leading

to a leaf is a perpendicular bisector separating Voronoi cells i and i + 1 for some i

mod 8. For i = 1, 2, 3, 4, the corner point at the end of this bisector is 1, 5, 2, 6,

respectively, as can be seen in Figure 3.2. The reader can check that this labeled

diagram is consistent with the L in Figure 2.2.

Figure 5.3. Top half of cut loci.
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In Figure 5.4, we do the same thing for the bottom half of cut loci in the top half

of Q1. The corner numbers at the ends of segments bounding Voronoi cells 5 and 6,

6 and 7, 7 and 8, and 8 and 1 are 7, 3, 8, and 4, respectively.

Figure 5.4. Bottom half of cut loci.
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A similar discussion could be made for the L associated to the curves. But it is

easier and more insightful to note how the L for a curve bounding two regions is
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obtained from that of each of the two regions by collapsing a segment in which the

two regions differ. For example, the L for the BD curve in Figure 2.4 is obtained

from those in region B or D in Figure 2.2 by collapsing the segment connecting the

edges leading to corner points 4 and 7. Similarly, the L for points of intersection of

two curves is obtained by collapsing a segment in the L of each. For example, the L

for point BDEI in Figure 2.6 is obtained from those of curves BD and EI in Figure

2.4 by collapsing in each the highest vertical interval.

The L’s in Figures 2.5 and 2.7 are different from those seen previously in that they

have a corner point labeling a degree-2 vertex. In these cases, the choice of cuts is

not unique, but, of course, the cut locus does not depend on the choice. We comment

briefly on the L in these cases.

If P is on the left edge of the cube, the L is as seen in Figure 1.2. If P is at a

corner point of the cube, the cut locus consists of segments from the corner point

opposite P to each of the other corner points. If P is at the center of a face F , the

cut locus consists of the diagonals of the opposite face F op and the four edges of the

cube connecting F and F op.

If P = (x, 4 − x) with 0 < x < 4 is on the half-diagonal, then ⊥4,5 is the line

w = 4, which intersects the point in the star-unfolding corresponding to corner point

2. Then the short segment connecting the point π3,4,5 in Figure 3.4 with the point

labeled 2 will have collapsed to a point. In the A diagram in Figure 2.2, this is the

collapse of the vertical segment from the point labeled 2. This can be seen in terms of

the Voronoi cells in the A-part of Figure 5.3. A similar thing happens to the vertical

segment leading to the point labeled 8, as the equation of ⊥7,8 is v = −8. Also the

lines ⊥1,7, ⊥3,5, ⊥1,5, ⊥1,3, and ⊥5,7 all intersect at (v, w) = (−x, 4− x).

In Section 2, we discussed how a permutation τ (resp. σ) applied to corner points

yields L in the vertical flip (resp. 90-degree clockwise rotation) of a region or curve.

Here we give a brief explanation of the reason for that. Such a motion applied to

a point P in the region has the same effect on geodesics from P , and hence on LP .

Referring to Figure 3.1, we see that, for example, the corner point 8 in LP will be

replaced by 5 (resp. 7), which expands to the asserted permutations.
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6. No other transitions

In this section, we present a proof that there are no regions other than those

described earlier.

Suppose LP0 ̸= LP1 . Let P (t) = (1− t)P0 + tP1, and, for any 3-subset S of [8], let

πS(t) = πS(P (t)), a path in the vw-plane. For each S such that πS(0) is a vertex of

LP0 , let

t0(S) = sup{t ∈ [0, 1] : πS(t
′) is a vertex of LP (t′) ∀t′ < t},

and let

t0 = min{t0(S) : πS(0) is a vertex of LP0}.
Finally, let S = {α, β, γ} satisfy t0(S) = t0. The first transition in moving from P0

to P1 will involve πS(P (t0)).

Proposition 6.1. There exists δ ∈ [8]− S and a decomposition of S as {β} ∪ {α, γ}
such that π{α,γ,δ}(0) is a vertex of LP0, and πS(t0) = π{α,γ,δ}(t0) is a common vertex

of LP (t0).

Proof. There exists ε > 0 and δ ∈ [8] − S such that for t in the interval (t0, t0 + ε),

πS(t) is closer to Pδ than it is to Pα, Pβ, and Pγ. The path πS crosses ⊥δ,η (P (t0))

for some η ∈ [8], and η must equal α, β, or γ, since for t in some interval (t0 − ε′, t0),

πS(t) is closer to Pα, Pβ, and Pγ than it is to any other Pη. Without loss of generality,

say η = β. Then πS(t0) intersects ⊥β,δ (P (t0)), and so all six perpendicular bisectors

from {α, β, γ, δ} intersect in LP (t0). By minimality of t0, since π{α,γ,δ}(t0) ∈ LP (t0), we

conclude that π{α,γ,δ}(0) ∈ LP0 . See Figure 5.1 for a depiction of this transition.

Theorem 6.2. There are no transitions except those claimed earlier in the manu-

script.

Proof. Let S1 = {2, 3, 4}, S2 = {1, 5}, and S3 = {6, 7, 8}. Recall that all of our

asserted regions in Q1 have L with three vertices from S1∪S2 and three from S2∪S3.

If LP0 ̸= LP1 with LP0 in one of our regions, and t0 is as above, so that we are

considering the first transition in moving from P0 to P1, then the set {α, β, γ, δ}
involved in the transition must either contain S2 or else equal one of {1, 2, 3, 4},
{2, 3, 4, 5}, {1, 6, 7, 8}, or {5, 6, 7, 8}. This is true since sets with elements of type
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S1S2S3S3, S1S1S2S3, S1S1S3S3, S1S1S1S3, or S1S3S3S3 do not contain two 3-subsets

of the type of the vertices of LP0 . In our earlier determination of the regions in Q1, we

considered the four specific sets listed above (containing a single 1 or 5), and also all

sets with elements of type S1S1S2S2 and S2S2S3S3. It remains to consider {1, 5, α, β}
with α ∈ S1 and β ∈ S3. If P ∈ Q1, we use Maple, similarly to (5.2), to see that,

for α ∈ S1 and β ∈ S3, π{1,α,β}(P ) does not lie on ⊥1,5 (P ). Thus there can be no

transitions other than the ones described earlier in the paper.

We explain briefly the Maple work that led to this conclusion. We follow steps that

led to (5.2) but using one of {β, γ} in S1 and one in S3. We obtain equations similar

to (5.2). We plot them and find that there are no solutions satisfying −4 < y < 4,

0 < x < 4− |y|.
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