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Abstract. We determine the symmetrized topological complex-
ity of the circle, using primarily just general topology.

1. Introduction

Let PX denote the space of all paths in a topological space X, and define p :

PX → X × X by p(σ) = (σ(0), σ(1)). If V ⊂ X × X, a section s : V → PX

is called a motion planning rule on V . The reduced topological complexity of X,

TC(X), is 1 less than the minimal number of open sets V covering X × X which

admit motion planning rules. The notion of topological complexity was introduced

by Farber in [4] in unreduced form, but most recent papers have preferred the reduced

notation. Topological complexity can be applied to robotics when X is the space of

configurations of a robot.

A set V ⊂ X × X is symmetric if (x, y) ∈ V iff (y, x) ∈ V . A symmetric motion

planning rule on such a set V is one which satisfies s(x1, x0) = s(x0, x1). Here

σ(t) = σ(1− t).
In [1], (reduced) symmetrized topological complexity TCΣ(X) of X was defined to

be 1 less than the minimal number of symmetric open sets covering X × X which

admit symmetric motion planning rules. We will prove the following new result.

Theorem 1.1. TCΣ(S1) = 2.

An earlier variant, called symmetric topological complexity, TCS(X), was intro-

duced in [5]. Employing here the reduced TC terminology, TCS(X) equals the mini-

mal number of symmetric open sets covering X×X−∆ admitting symmetric motion
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planning rules. Here ∆ = {(x, x) ∈ X×X} is the diagonal. This notion assumes that

one motion planning rule chooses the constant path from x to x, possibly extended

over a small neighborhood of ∆, and then considers separately symmetric paths be-

tween distinct points. The reduced version employed here has the −1 in the reduction

which cancels the +1 from the section over the diagonal. As noted in [1, Prop 4.2],

it is immediate that for all X

TCS(X)− 1 ≤ TCΣ(X) ≤ TCS(X).

The advantage of the TCS(−) concept is that, with P ′X denoting the space of paths

between distinct points of X, there is a Z2-equivariant fibration P ′X → X×X−∆ of

free Z2-spaces. This leads to nice cohomological bounds for TCS(−). In an email to

the author, Michael Farber confirmed that he felt that the TCΣ definition was “more

natural” than TCS. One nice feature of TCΣ is that it is a homotopy invariant ([1,

Prop 4.7]), whereas TCS is not. In the paper [6], written at the same time as ours,

Mark Grant discusses more fully the relationships between TCΣ and TCS. In that

paper he develops cohomological bounds for TCΣ.

In [5], it was shown that TCS(Sn) = 2 for all n ≥ 1. Since cohomology shows that

when n is even, three (not necessarily symmetric) motion planning rules are required

for Sn, we obtain that TCΣ(Sn) = 2 when n is even. In [1, Expl 4.5] and in [7,

Expl 17.5], it was noted that for odd n, it was not known whether TCΣ(Sn) = 1

or 2, and the case n = 1 was given special attention as an “Open Problem” in [7,

17.6]. Our contribution here is to resolve this open problem. In [6], Grant has proved

TCΣ(Sn) = 2 for all n, including n = 1, which required special methods. We thank

him for interesting and helpful discussion about his approach and ours.

2. Our approach and an example

Our approach is to associate to a motion planning rule on an open subset of S1×S1

a locally constant function d on an open subset of I × I with certain properties, and

then show (in the next section) that the domains of two such functions cannot cover

I × I.

Let ρ : I×I → S1×S1 be the usual quotient map defined by ρ(t, t′) = (e2πit, e2πit′),

and e : R→ S1 the usual covering map defined by e(t) = e2πit.
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Proposition 2.1. If V ⊂ S1 × S1 is a symmetric open set, and s : V → PS1 is

a symmetric motion planning rule, there is a continuous function d : ρ−1(V ) → Z
satisfying, for all points in its domain,

d(t, 1)− d(t, 0) = −1,(2.2)

d(1, t)− d(0, t) = 1,(2.3)

and d(t′, t) = −d(t, t′).(2.4)

Proof. Suppose ρ(t, t′) ∈ V with σ = s(ρ(t, t′)) ∈ PS1. Let σ̃ : I → R satisfy e◦σ̃ = σ.

Note that σ̃(1)− σ̃(0) is independent of the choice of σ̃. Let

d(t, t′) = σ̃(1)− σ̃(0)− (t′ − t) ∈ R.

Then

e(d(t, t′)) = σ(1)σ(0)−1e2πi(t−t′)

= e2πit′e−2πite2πi(t−t′) = 1.

Therefore d(t, t′) ∈ Z.

To see continuity of d, first note that σ varies continuously with (t, t′). Thus

σ̃(0) can be chosen to vary continuously with (t, t′), and hence so does σ̃(1), by the

Homotopy Lifting Theorem.

Since ρ(t, 1) = ρ(t, 0), the σ’s associated to these points are the same, and hence

so are the two values of σ̃(1) − σ̃(0). Now property (2.2) follows immediately from

the change in t′, and (2.3) follows similarly. Property (2.4) is clear, since both t′ − t
and σ̃(1)− σ̃(0) are negated when t and t′ are interchanged.

Since d is a continuous integer-valued function, it is constant on connected sets, a

fact which we will use frequently. Note that, by (2.2) and (2.3), (t, 1) is in the domain

of d iff (t, 0) is, and similarly for (1, t) and (0, t).

Next we provide an example of the functions d associated to three motion planning

rules whose domains cover the circle. The rules for moving from z to z′ are as follows.

• If z and z′ are not antipodal, follow the geodesic.

• If z and z′ are not at the same horizontal level, let w = z−z′
|z−z′|

and w′ = −w, and follow the geodesic from z to w, then the
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path from w to w′ which passes through 1, then the geodesic

from w′ to z′.

• If z and z′ are not at the same vertical level, let w = z−z′
|z−z′| and

w′ = −w, and follow the geodesic from z to w, then the path

from w to w′ which passes through i = eiπ/2, then the geodesic

from w′ to z′.

The functions d for these are as pictured in Figure 2.5:

Figure 2.5. Domains of three motion planning rules.
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Points in ∂I2 are in the domains except for (0, 0), (1, 0), (0, 1), and (1, 1) in the second
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For example, the region labeled “1” in the second square corresponds to points

(z, z′) = (e2πit, e2πit′) with t > t′ and 1
2
< t + t′ < 3

2
. One such point has (t, t′) =

(1
2
, 1

8
). For the second motion planning rule above, w = ei9π/8, w′ = eiπ/8, and

σ is a counterclockwise rotation from z to z′, passing through w and w′. Thus

σ̃(1)− σ̃(0) = 5
8
, and

d(1
2
, 1

8
) = 5

8
− (1

8
− 1

2
) = 1.

This is illustrated in Figure 2.6.

Figure 2.6. Circle illustrating a motion planning rule.
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Note that for each of the domains V in Figure 2.5, if a second open set V ′ covers

the interior boundary lines, then its function d′ in the first two figures would have to

satisfy d′(0, 1
2
) = −1

2
in order to satisfy (2.3) and (2.4), while in the third figure, d′
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must be 0 on a neighborhood of the two diagonal lines, and this will contradict (2.2)

and (2.3).

3. Proof of Theorem 1.1

Our proof uses the following result of general topology. Throughout the paper, ∂K

is the boundary in the sense of general topology, sometimes called frontier.

Proposition 3.1. If W is a connected bounded open set of the plane, and K is the

unbounded connected component of R2 −W , then its boundary, ∂K, is connected.

Proof. [2, Cor 1,p. 352] states that a bounded connected open set in the plane has con-

nected complement iff it has connected boundary, and calls this result “well known.”

We apply this to R2 −K, and note that ∂(R2 −K) = ∂K.

A recent proof of this proposition appears in [3]. We will use the following corollary

several times. It deals with a subspace U of the unit square which is open in the

subspace topology. By ∂U , we mean its boundary in R2.

Corollary 3.2. Let U be a connected open subset of I2 which intersects ∂I2, and let

P and Q be distinct points of the boundary in ∂I2 of U ∩ ∂I2. Let B and B′ be the

two components of ∂I2 − {P,Q}. Suppose B ∩ U = ∅. Then there is a connected

subset of ∂U − (B′ ∩ ∂U) which contains P and Q.

Proof. Apply Proposition 3.1 to W = U − (U ∩ ∂I2), with K being the unbounded

component of R2−W . Then ∂K is connected. Note that {P,Q} ⊂ ∂K and U∩∂I2 ⊂
∂K. The connected component of ∂K − (U ∩ ∂I2) containing P also contains Q and

is contained in ∂U − (B′ ∩ ∂U).

Proof of Theorem 1.1. Suppose I × I is covered by two open sets V and V ′ equipped

with locally constant functions d and d′ satisfying (2.2), (2.3), and (2.4). We will

show that this leads to a contradiction, which, along with the three symmetric motion

planning rules described in Section 2, implies the theorem.

By compactness, only finitely many connected components of V and V ′ need be

considered. At least one of these, say V , must contain (0, 0) and hence also the

other three corner points. Schematically, there are three ways that the connected



6 DONALD M. DAVIS

components of V containing the corner points can occur, as illustrated in Figure 3.3,

with the d-values in each indicated. We will call a portion such as occurs in the center

of the second and third figures a ”bridge.” A fourth possibility, a 90-degree rotation

of the second figure, would have to have d = 0 in all three parts by (2.4), and this

would contradict (2.2) and (2.3). The small rectangular portions in the third figure

are not a connected component of V containing a corner point, but are necessary in

order to satisfy (2.2) and (2.3).

Figure 3.3. Three possibilities for corner-point neighborhoods.

−1

0

0

1 1

0

−1 −1 0

1

−1

1

0

a b c

The d-values are as indicated because a connected open set containing a neighbor-

hood of a point (t, t) must have d = 0 by (2.4), and then the other sets have d = ±1

by (2.2) and (2.3). The boundaries of these regions need not be smooth curves as

suggested by the diagram, but by Corollary 3.2 they are connected sets containing the

two points on ∂I2. These connected open sets can have holes, either in the interior

of I2 or, more significantly, containing an open set in ∂I2. We will deal with the

consequences of such holes later in the proof.

The other open set, V ′, must contain connected open sets covering the boundaries

of the components of V just considered. There are several possibilities. We have

indicated in orange a variety of such possibilities, again very schematically, in Figure

3.4. The V ′ components may (cases a1, b1, c1) or may not (a2, b2, c2) contain the

corner points. A neighborhood of the boundaries of a bridge may (cases b1, c1) or

may not (b2, c2) contain the entire bridge. A V ′ neighborhood of the sets in Figure

3.3a may (case a2) or may not (a1) contain a bridge. We list the d-values for the V -

neighborhoods in Figure 3.4 to emphasize which portions of the diagram are included

in V .
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Figure 3.4. Six possibilities for first V ′ neighborhoods.
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Note that only Figure 3.4b2 has the property that the displayed sets V and V ′ cover

I2. However, in this case, V ′ does not admit a d′ function. If CL and CR are its two

components, then d′(CR) = −d′(CL) by (2.4) but d′(CR) = d′(CL) + 1 by (2.3), and

so these cannot have integer values. In all the other cases of Figure 3.4, V ′ admits a

d′-function which equals the d-value of the V -set which it intersects.

Next, V must contain open connected sets containing all of the V ′-boundaries just

obtained which were not contained in the initial V -sets. Note that the boundary of a

V -component can never intersect the boundary of a V ′-component because (since V

and V ′ are open) the boundary points are not in the open sets, and so an intersection

point of the two boundaries would not be in V ∪ V ′, which is supposed to cover the

square.

In order to have V ∪V ′ cover the square, we must continue alternately adding new

components of V and V ′, each time covering new boundary parts of the other set

just added. At some stage, the situation illustrated in 3.3a and 3.4a1 must yield to

a bridge, in order that the diagonal is covered by V ∪ V ′. At some stage, the bands

coming down to the right from the bridge, and up from the lower right corner must

combine. For example, that could happen with the next V -component in Figure 3.4



8 DONALD M. DAVIS

parts a2, b1, c1, or c2. We claim that this will necessarily cause a contradiction on the

d-function similar to that observed in Figure 3.4b2.

We consider now the V -boundaries which extend from the lower edge to the right

edge, as well as their symmetric counterparts. These, as well as the analogous V ′-

boundaries, are obtained iteratively using Corollary 3.2 with P equal to the sup of the

set of x such that (x, 0) is in the closure of the V or V ′ component being considered,

and Q the inf of y’s such that (1, y) is in this closure. The V -boundaries are illustrated

schematically in Figure 3.5.

Figure 3.5. Boundaries of V -bands.
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The open bands between these boundary sets could have interior holes, which are

not an issue at all, as a hole in a V -band can be covered by a V ′ open set with

no problem regarding the d-function, and vice versa, and they can have holes or

modifications at the boundary, which we will consider later. Temporarily ignoring

this possibility, each of the open bands between consecutive boundary sets must be

either a component of V , or else covered by a component of V ′. The requirement that

(0, t) ∈ V iff (1, t) forces additional components as illustrated in the tiny portions of

Figure 3.5.

The region between the two x1y1 boundary sets must have d = 0 by (2.4). If

y1 < x1, as is the case in Figure 3.5, then for t between y1 and x1, we obtain a

contradiction to (2.3). If y1 = x1, then the V ′ sets containing the two x1y1 boundary

sets imply d′(0, x1) = −1
2

by (2.3) and (2.4), contradicting integrality of d′. At the

other extreme, if yn > xn, then if xn < t < yn, then (0, t) and (1, t) lie in symmetric
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regions, so d(0, t) = −d(1, t), which is inconsistent with (2.3) and integrality of d. See

Figure 3.7 for an illustration of a variation on this.

Otherwise, let k be minimal such that yk ≤ xk. The preceding paragraph shows

that such a k must exist with 1 < k < n. If yk < xk, then there exists t satisfying

xk−1 < t < xk and yk < t < yk−1. Then (0, t) and (1, t) lie in symmetric bands, and

so (2.4) and (2.3) imply the usual contradiction to integrality of d. If yk = xk, the

contradiction is obtained on d′(0, xk) and d′(1, xk) using the V ′ sets which contain

the xkyk boundary set and its symmetric counterpart.

Our contradictions have all been due to points of ∂I2 which lie in symmetric bands

of components of V or V ′. It is conceivable that these bands might have a hole where

they meet ∂I2. Suppose yk < xk−1 < yk−1 < xk, so that we expect to obtain a

contradiction in this band. It could happen that the points (0, t) for xk−1 < t < yk−1

are cut off from the main band as indicated schematically in Figure 3.6, in which we

write k′ instead of k − 1 for typographical reasons.

Figure 3.6. Hole at contradiction point.
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The indicated region R and its symmetric counterpart must be part of V or part of

V ′. Since (t, 0) ∈ V (resp. V ′) iff (t, 1) ∈ V (resp. V ′), there will be an opposing part

of V or V ′, as suggested by the set S in Figure 3.6, which will also have a symmetric

counterpart. The boundary of R must intersect the xk−1yk−1 boundary, for otherwise

there would be points of ∂I2 in the band giving the previous contradiction. There

must be a V ′ component containing the union of ∂R and the xk−1yk−1 boundary, as

indicated by the orange set in Figure 3.6. The values d′(0, xk−1) and d′(1, xk−1) give

the usual contradiction ((2.4), (2.3), and integrality).
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A similar situation could occur regarding the contradiction that was obtained earlier

in the case that yn > xn. As illustrated in Figure 3.7, the t-values between xn and yn

on ∂I2 could be cut off from the main symmetric regions. We obtain the same sort of

contradiction as was obtained in Figure 3.6, using here the V ′-component containing

the union of the xnyn-boundary and ∂R, and its symmetric counterpart.

Figure 3.7. Hole at contradiction point near end.
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