THE SYMMETRIC TOPOLOGICAL COMPLEXITY OF THE CIRCLE

DONALD M. DAVIS

ABSTRACT. We determine the symmetric topological complexity of the circle, using primarily just general topology.

1. Introduction

Let PX denote the space of all paths in a topological space X, and define $p: PX \to X \times X$ by $p(\sigma) = (\sigma(0), \sigma(1))$. If $V \subset X \times X$, a section $s: V \to PX$ is called a motion planning rule on V. The reduced topological complexity of X, TC(X), is 1 less than the minimal number of open sets V covering $X \times X$ which admit motion planning rules. The notion of topological complexity was introduced by Farber in [2] in unreduced form, but most recent papers have preferred the reduced notation. Topological complexity can be applied to robotics when X is the space of configurations of a robot.

A set $V \subset X \times X$ is symmetric if $(x,y) \in V$ iff $(y,x) \in V$. A symmetric motion planning rule on such a set V is one which satisfies $s(x_1,x_0) = \overline{s(x_0,x_1)}$. Here $\overline{\sigma}(t) = \sigma(1-t)$.

In [1], (reduced) symmetric topological complexity $\mathrm{TC}^\Sigma(X)$ of X was defined to be 1 less than the minimal number of symmetric open sets covering $X \times X$ which admit symmetric motion planning rules. We will prove the following new result.

Theorem 1.1. $TC^{\Sigma}(S^1) = 2$.

An earlier variant of symmetric topological complexity, $TC^S(X)$, was introduced in [3]. Employing here the reduced TC terminology, $TC^S(X)$ equals the minimal number of symmetric open sets covering $X \times X - \Delta$ admitting symmetric motion planning

Date: February 13, 2017.

Key words and phrases. Topological complexity.

2000 Mathematics Subject Classification: 55M30, 55N25, 57M20.

rules. Here $\Delta = \{(x,x) \in X \times X\}$ is the diagonal. This notion assumes that one motion planning rule chooses the constant path from x to x, possibly extended over a small neighborhood of Δ , and then considers separately symmetric paths between distinct points. The reduced version employed here has the -1 in the reduction which cancels the +1 from the section over the diagonal. As noted in [1, Prop 4.2], it is immediate that for all X

$$TC^{S}(X) - 1 \le TC^{\Sigma}(X) \le TC^{S}(X).$$

The advantage of the $TC^S(-)$ concept is that the space of paths between distinct points of X fibers \mathbb{Z}_2 -equivariantly over $X \times X - \Delta$, but there is no such fibration over $X \times X$. This leads to a nice cohomological lower bound for $TC^S(-)$, which we do not have for $TC^{\Sigma}(-)$. In an email to the author, Michael Farber confirmed that he felt that the TC^{Σ} definition was "more natural" than TC^S . One nice feature of TC^{Σ} is that it is a homotopy invariant ([1, Prop 4.7]), whereas TC^S is not.

In [3], it was shown that $TC^S(S^n) = 2$ for all $n \ge 1$. Since cohomology shows that when n is even, three (not necessarily symmetric) motion planning rules are required for S^n , we obtain that $TC^{\Sigma}(S^n) = 2$ when n is even. In [1, Expl 4.5] and in [5, Expl 17.5], it was noted that for odd n, it was not known whether $TC^{\Sigma}(S^n) = 1$ or 2, and the S^1 -case was given special attention as an "Open Problem" in [5, 17.6]. Our contribution here is to resolve this open problem.

2. Our approach and an example

Our approach is to associate to a motion planning rule on an open subset of $S^1 \times S^1$ a locally constant function d on an open subset of $I \times I$ with certain properties, and then show (in the next section) that the domains of two such functions cannot cover $I \times I$.

Let $\rho: I \times I \to S^1 \times S^1$ be the usual quotient map defined by $\rho(t, t') = (e^{2\pi i t}, e^{2\pi i t'})$, and $e: \mathbb{R} \to S^1$ the usual covering map defined by $e(t) = e^{2\pi i t}$.

Proposition 2.1. If $V \subset S^1 \times S^1$ is a symmetric open set, and $s: V \to PS^1$ is a symmetric motion planning rule, there is a continuous function $d: \rho^{-1}(V) \to \mathbb{Z}$

satisfying, for all points in its domain,

$$(2.2) d(t,1) - d(t,0) = -1,$$

$$(2.3) d(1,t) - d(0,t) = 1,$$

(2.4) and
$$d(t',t) = -d(t,t')$$
.

Proof. Suppose $\rho(t,t') \in V$ with $\sigma = s(\rho(t,t')) \in PS^1$. Let $\widetilde{\sigma}: I \to \mathbb{R}$ satisfy $e \circ \widetilde{\sigma} = \sigma$. Note that $\widetilde{\sigma}(1) - \widetilde{\sigma}(0)$ is independent of the choice of $\widetilde{\sigma}$. Let

$$d(t, t') = \widetilde{\sigma}(1) - \widetilde{\sigma}(0) - (t' - t) \in \mathbb{R}.$$

Then

$$\begin{split} e(d(t,t')) &= \sigma(1) - \sigma(0) - e^{2\pi i t'} + e^{2\pi i t} \\ &= s\rho(t,t')(1) - s\rho(t,t')(0) - e^{2\pi i t'} + e^{2\pi i t} \\ &= s(e^{2\pi i t},e^{2\pi i t'})(1) - s(e^{2\pi i t},e^{2\pi i t'})(0) - e^{2\pi i t'} + e^{2\pi i t} \\ &= e^{2\pi i t'} - e^{2\pi i t} - e^{2\pi i t'} + e^{2\pi i t} = 0. \end{split}$$

Therefore $d(t, t') \in \mathbb{Z}$.

To see continuity of d, first note that σ varies continuously with (t, t'). Thus $\tilde{\sigma}(0)$ can be chosen to vary continuously with (t, t'), and hence so does $\tilde{\sigma}(1)$, by the Homotopy Lifting Theorem.

Since $\rho(t,1) = \rho(t,0)$, the σ 's associated to (t,0) and (t,1) are the same, and hence so are the two values of $\widetilde{\sigma}(1) - \widetilde{\sigma}(0)$. Now property (2.2) follows immediately from the change in t', and (2.3) follows similarly. Property (2.4) is clear, since both t' - t and $\widetilde{\sigma}(1) - \widetilde{\sigma}(0)$ are negated when t and t' are interchanged.

Since d is a continuous integer-valued function, it is constant on connected sets, a fact which we will use frequently. Note that, by (2.2) and (2.3), (t, 1) is in the domain of d iff (t, 0) is, and similarly for (1, t) and (0, t).

Next we provide an example of the functions d associated to three motion planning rules whose domains cover the circle. The rules for moving from z to z' are as follows.

- If z and z' are not antipodal, follow the geodesic.
- If z and z' are not at the same horizontal level, let $w = \frac{z-z'}{|z-z'|}$ and w' = -w, and follow the geodesic from z to w, then the

path from w to w' which passes through 1, then the geodesic from w' to z'.

• If z and z' are not at the same vertical level, let $w = \frac{z-z'}{|z-z'|}$ and w' = -w, and follow the geodesic from z to w, then the path from w to w' which passes through $i = e^{i\pi/2}$, then the geodesic from w' to z'.

The functions d for these are as pictured in Figure 2.5:

Figure 2.5.

Points in ∂I^2 are in the domains except for (0,0), (1,0), (0,1), and (1,1) in the second and third, and $(0,\frac{1}{2})$, $(1,\frac{1}{2})$, $(\frac{1}{2},0)$, and $(\frac{1}{2},1)$ in the first and second.

For example, the region labeled "1" in the second square consists of points $(z,z')=(e^{2\pi it},e^{2\pi it'})$ with t>t' and $\frac{1}{2}< t+t'<\frac{3}{2}$. One such point has $(t,t')=(\frac{1}{2},\frac{1}{8})$. For the second motion planning rule above, $w=e^{i9\pi/8}$, $w'=e^{i\pi/8}$, and σ is a counterclockwise rotation from z to z', passing through w and w'. Thus $\widetilde{\sigma}(1)-\widetilde{\sigma}(0)=\frac{5}{8}$, and

$$d(\frac{1}{2}, \frac{1}{8}) = \frac{5}{8} - (\frac{1}{8} - \frac{1}{2}) = 1.$$

This is illustrated in Figure 2.6.

Figure 2.6.

3. Proof of Theorem 1.1

Our proof uses the following result of general topology.

Proposition 3.1. If W is a connected bounded open set in the plane, and K is any connected component of $\mathbb{R}^2 - W$, then its boundary, ∂K , is connected.

This result can be found in [4, Thm 22, p. 193]. We will use the following corollary several times. It deals with a subspace U of the unit square which is open in the subspace topology. By ∂U , we mean its boundary in \mathbb{R}^2 .

Corollary 3.2. Let U be a connected open subset of I^2 , and let P and Q be distinct points of the boundary in ∂I^2 of $U \cap \partial I^2$. Let B and B' be the two components of $\partial I^2 - \{P, Q\}$. Suppose $B \cap U = \emptyset$. Then there is a connected subset of $\partial U - (B' \cap \partial U)$ which contains P and Q.

Proof. Apply the proposition to $W = U - (U \cap \partial I^2)$, with K being the unbounded component of $\mathbb{R}^2 - W$. Then ∂K is connected. Note that $\{P,Q\} \subset \partial K$ and $U \cap \partial I^2 \subset \partial K$. The connected component of $\partial K - (U \cap \partial I^2)$ containing P also contains Q and is contained in $\partial U - (B' \cap \partial U)$.

Proof of Theorem 1.1. Suppose $I \times I$ is covered by two open sets V and V' equipped with locally constant functions d and d' satisfying (2.2), (2.3), and (2.4). We will show that this leads to a contradiction, implying the theorem.

At least one of these, say V, must contain (0,0) and hence also the other three corner points. Let W_1 , X_1 , Y_1 , and Z_1 be the connected components of V containing (0,0), (0,1), (1,0), and (1,1), respectively. Note that each of W_1 and Z_1 is symmetric, while X_1 and Y_1 are symmetric to one another. It is possible that $W_1 = Z_1$; we will consider that as part of Case 2. We assume as Case 1 that ∂W_1 does not meet the edges $1 \times I$ and $I \times 1$.

Property (2.4) implies that $d(W_1) = d(Z_1) = 0$, and then properties (2.2) and (2.3) imply that $d(X_1) = -1$ and $d(Y_1) = 1$. Let

$$J_1 = \{x : (x,0) \in W_1\} = \{y : (0,y) \in W_1\} = \{x : (x,1) \in X_1\} = \{y : (1,y) \in Y_1\}$$
 and

$$K_1 = \{x : (x,0) \in Y_1\} = \{y : (0,y) \in X_1\} = \{x : (x,1) \in Z_1\} = \{y : (1,y) \in Z_1\}.$$

Let $x_1 = \sup\{x : x \in J_1\}$ and $z_1 = \inf\{z : z \in K_1\}.$

By Corollary 3.2, ∂W_1 contains a connected set C_1 containing $(x_1, 0)$ and $(0, x_1)$. Similarly, there are connected sets D_1 , E_1 , and F_1 contained in ∂X_1 , ∂Y_1 , and ∂Z_1 , respectively, and containing the pairs of points $(0, z_1)$ and $(x_1, 1)$, $(z_1, 0)$ and $(1, x_1)$, and $(z_1, 1)$ and $(1, z_1)$, respectively. See the illustrative schematic diagram Figure 3.3 below. The cutouts just illustrate the possibility of holes in W_1 , X_1 , Y_1 , and Z_1 .

Figure 3.3.

We claim $x_1 \leq z_1$. Indeed, $d(W_1) = 0$, while $d(Y_1) = 1$, so W_1 and Y_1 are disjoint. If $x < x_1$, then C_1 is a connected set separating (x, 0) from all points in Y_1 . So (x, 0) cannot be in Y_1 . Thus $z_1 = \inf\{x : (x, 0) \in Y_1\} \geq x_1$.

If $z_1 = x_1$, then $B_1 := C_1 \cup D_1 \cup E_1 \cup F_1$ is a connected set disjoint from V. Thus V' contains an open connected set U containing B_1 . Hence d' is constant on U. However $d'(x_1, 1) - d'(x_1, 0) = -1$ with both points in U, so this is a contradiction.

Thus we may assume that $x_1 < z_1$. The open set V' must contain disjoint (because of d') connected open sets W_2 , X_2 , Y_2 , Z_2 containing C_1 , D_1 , E_1 , and F_1 , respectively. Both of the sets W_2 and Z_2 are symmetric, while X_2 and Y_2 are symmetric to one another. Let $x_2 = \sup\{x : (x,0) \in W_2\}$ and $z_2 = \inf\{x : (x,0) \in Y_2\}$.

By Corollary 3.2, ∂W_2 contains a connected set C_2 containing $(x_2,0)$ and $(0,x_2)$. As before, $x_1 < x_2 \le z_2 < z_1$. Similarly, using symmetry, ∂X_2 , ∂Y_2 , and ∂Z_2 contain connected sets D_2 , E_2 , and F_2 containing the pairs of points $(0, z_2)$ and $(x_2, 1)$, $(z_2, 0)$ and $(1, x_2)$, and $(z_2, 1)$ and $(1, z_2)$, respectively.

We are in the same situation as before. If $x_2 = z_2$, then $C_2 \cup D_2 \cup E_2 \cup F_2$ is a connected set disjoint from V', and so V must contain it, yielding a contradiction on the values $d(x_2, 0)$ and $d(x_2, 1)$.

We can continue like this, obtaining connected open sets W_n , X_n , Y_n , and Z_n alternately contained in V and V', and connected sets $C_n \subset \partial W_n$ such that W_{n+1} contains C_n , and similarly for X, Y, and Z. Moreover, if $x_n = \sup\{x : (x,0) \in W_n\}$ and $z_n = \inf\{x : (x,0) \in Y_n\}$, then

$$x_1 < x_2 < \dots < x_n \le z_n < \dots < z_2 < z_1.$$

If, for some n, $x_n = z_n$, we stop because we have the contradiction seen above, of obtaining a connected set with contradictory d or d' values.

If it never happens that $x_n = z_n$, then we have a strictly increasing sequence of numbers x_n , which must approach a limiting value x_0 . The point $(x_0, 0)$ must have a neighborhood N contained in either V or V'. WLOG, say $N \subset V$. But none of the points $(x_{2i+1}, 0)$ are in V, and yet infinitely many of them are in N. This contradiction completes the argument, showing that it is impossible to have sets V and V' as claimed.

Now we consider, as Case 2, the case in which W_1 intersects all four sides of the square. This includes the possibility that $Z_1 = W_1$. A schematic diagram of sets illustrating both possibilities for Case 2 and admitting functions d satisfying (2.2), (2.3), and (2.4) appears in Figure 3.4.

Figure 3.4.

The same argument applies to both of these possibilities. Let $x_1 = \sup\{x : (x,0) \in W_1\}$ and $z_1 = \inf\{y : (1,y) \in W_1\}$, as in Case 1. By Corollary 3.2, ∂W_1 contains a connected set C_1 which contains $(x_1,0)$ and $(1,z_1)$. Again $x_1 \leq z_1$ since C_1 separates $(z_1,0)$ from all (x,0) with $x < x_1$.

The second set in our cover, V', must contain a connected open set W_2 containing C_1 , and also must contain its symmetric counterpart $\tau(W_2) = \{(x,y) : (y,x) \in W_2\}$. Letting d' denote the d-function for V', we have $d'(\tau(W_2)) = -d'(W_2)$ by (2.4). If $z_1 = x_1$, $d'(W_2) = d'(x_1,0) = 1 + d'(x_1,1) = 1 + d'(\tau(W_2))$. Hence $d'(W_2) = \frac{1}{2}$, contradicting that d' is integer-valued. Thus we may assume that $x_1 < z_1$.

Using (2.2)-(2.4), $z_1 = \inf\{x : (x,0) \in Y_1\}$ and $x_1 = \sup\{y : (1,y) \in Y_1\}$. By Corollary 3.2, ∂Y_1 contains a connected set D_1 containing $(z_1,0)$ and $(1,x_1)$, and then V' contains a connected open set Y_2 containing D_1 . Using (2.2)-(2.4), $d'(Y_2) = -d'(W_2) + 1$, so $d'(Y_2) \neq d'(W_2)$, and hence W_2 and Y_2 are disjoint.

Let $x_2 = \sup\{x : (x,0) \in W_2\}$ and $z_2 = \inf\{x : (x,0) \in Y_2\}$. Then $x_2 \leq z_2$, and similarly to x_1 and z_1 , we cannot have $x_2 = z_2$. We continue this process, obtaining connected sets C_n and D_n and connected open sets W_n and Y_n such that $C_n \subset \partial W_n$, $D_n \subset \partial W_n$, $C_n \subset W_{n+1}$, and $D_n \subset Y_{n+1}$, and obtain a contradiction similar to the one at the end of Case 1, using the numbers $x_n = \sup\{x : (x,0) \in W_n\}$ and $z_n = \inf\{x : (x,0) \in Y_n\}$. This completes the proof that the hypothesized sets V and V' cannot exist.

References

- [1] I.Basabe, J.Gonzalez, Y.B.Rudyak, D.Tamaki, *Higher topological complexity and its symmetrization*, Alg Geom Topology **14** (2014) 2103-2124.
- [2] M.Farber, Topological complexity of motion planning, Discrete Comput. Geom 29 (2003) 211–221.
- [3] M.Farber and M.Grant, Symmetric motion planning, Contemp Math 438 (2007) 85–104.
- [4] R.L.Moore, Foundations of point set theory, American Math Society Colloquium Publications 13 (1932).
- [5] Y.B.Rudyak, Topological complexity and related invariants, Morfismos 20 (2016) 1–24.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA $E\text{-}mail\ address:\ dmd1@lehigh.edu$