THE SYMMETRIC TOPOLOGICAL COMPLEXITY OF THE
CIRCLE

DONALD M. DAVIS

ABSTRACT. We determine the symmetric topological complexity
of the circle, using primarily just general topology.

1. INTRODUCTION

Let PX denote the space of all paths in a topological space X, and define p :
PX — X x X by p(o) = (0(0),0(1)). If V C X x X, a section s : V — PX
is called a motion planning rule on V. The reduced topological complexity of X,
TC(X), is 1 less than the minimal number of open sets V' covering X x X which
admit motion planning rules. The notion of topological complexity was introduced
by Farber in [2] in unreduced form, but most recent papers have preferred the reduced
notation. Topological complexity can be applied to robotics when X is the space of
configurations of a robot.

Aset V C X x X is symmetric if (x,y) € V iff (y,2) € V. A symmetric motion
planning rule on such a set V is one which satisfies s(zq,x0) = s(zg,21). Here
a(t)=o(l—1).

In [1], (reduced) symmetric topological complexity TC¥(X) of X was defined to be
1 less than the minimal number of symmetric open sets covering X x X which admit

symmetric motion planning rules. We will prove the following new result.
Theorem 1.1. TC*(S") = 2.

An earlier variant of symmetric topological complexity, TC®(X), was introduced in
[3]. Employing here the reduced TC terminology, TCS (X) equals the minimal number

of symmetric open sets covering X x X — A admitting symmetric motion planning
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rules. Here A = {(z,2) € X x X} is the diagonal. This notion assumes that one
motion planning rule chooses the constant path from x to x, possibly extended over
a small neighborhood of A, and then considers separately symmetric paths between
distinct points. The reduced version employed here has the —1 in the reduction which
cancels the +1 from the section over the diagonal. As noted in [1, Prop 4.2], it is
immediate that for all X

TCY(X) —1 < TC¥(X) < TCY(X).

The advantage of the TC® (—) concept is that the space of paths between distinct
points of X fibers Zs-equivariantly over X x X — A, but there is no such fibration
over X x X. This leads to a nice cohomological lower bound for TC®(—), which we
do not have for TC*(—). In an email to the author, Michael Farber confirmed that
he felt that the TC® definition was “more natural” than TC®. One nice feature of
TC* is that it is a homotopy invariant ([1, Prop 4.7]), whereas TC® is not.

In [3], it was shown that TC®(S™) = 2 for all n > 1. Since cohomology shows that
when n is even, three (not necessarily symmetric) motion planning rules are required
for S™, we obtain that TC¥(S™) = 2 when n is even. In [1, Expl 4.5] and in [5, Expl
17.5], it was noted that for odd n, it was not known whether TC*(S™) = 1 or 2,
and the S'-case was given special attention as an “Open Problem” in [5, 17.6]. Our

contribution here is to resolve this open problem.

2. OUR APPROACH AND AN EXAMPLE

Our approach is to associate to a motion planning rule on an open subset of St x S*
a locally constant function d on an open subset of I x I with certain properties, and
then show (in the next section) that the domains of two such functions cannot cover
I x1.

Let p: I x I — S'x S be the usual quotient map defined by p(t,t') = (e, e2™""),
and e : R — S! the usual covering map defined by e(t) = e*™*.
Proposition 2.1. If V C S' x S is a symmetric open set, and s : V — PS! is

a symmetric motion planning rule, there is a continuous function d : p~*(V) — Z
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satisfying, for all points in its domain,

(2.2) d(t,1) —d(t,0) = —1,
(2.3) d(1,t) —d(0,t) =1,
(2.4) and  d(t',t) = —d(t,1).

Proof. Suppose p(t,t') € V with o = s(p(t,t')) € PS*. Let o : I — R satisfy eoo = 0.
Note that (1) — 7 (0) is independent of the choice of 7. Let
d(t,t'y=0o(1) —o(0)— (' —t) e R.
Then
e(d(t,t)) = o(1) —o(0) — 2™ 4 2"t

= sp(t,)(1) = sp(t, )(0) — 2T 4 it

N Gl ezmt/)(l) — (e, 627r7lt’)(0) _ e2mit! | 2mit
2mit!

. o .
2mit 627Tlt 4 62mt =0.

= € €

Therefore d(t,t') € Z.

To see continuity of d, first note that o varies continuously with (¢,¢'). Thus
7(0) can be chosen to vary continuously with (¢,¢'), and hence so does (1), by the
Homotopy Lifting Theorem.

Since p(t, 1) = p(t,0), the o’s associated to (¢,0) and (¢, 1) are the same, and hence
so are the two values of o(1) — (0). Now property (2.2) follows immediately from
the change in ¢/, and (2.3) follows similarly. Property (2.4) is clear, since both ¢ — ¢

and o(1) — 7(0) are negated when ¢ and ' are interchanged. W

Since d is a continuous integer-valued function, it is constant on connected sets, a
fact which we will use frequently. Note that, by (2.2) and (2.3), (¢, 1) is in the domain
of d iff (¢,0) is, and similarly for (1,¢) and (0,?).

Next we provide an example of the functions d associated to three motion planning

rules whose domains cover the circle. The rules for moving from z to 2z’ are as follows.

e If z and 2’ are not antipodal, follow the geodesic.

z—2'
|z—2"]

e If 2z and 2’ are not at the same horizontal level, let w =

and w’ = —w, and follow the geodesic from z to w, then the



4 DONALD M. DAVIS

path from w to w’ which passes through 1, then the geodesic

from w’ to 2.

e If 2 and 2’ are not at the same vertical level, let w = é%j:' and
w' = —w, and follow the geodesic from z to w, then the path

from w to w’ which passes through i = ¢”™/2, then the geodesic

from w’ to 2.

The functions d for these are as pictured in Figure 2.5:

Figure 2.5.
—1 0

Points in 912 are in the domains except for (0,0), (1,0), (0,1), and (1,1) in the second
and third, and (0, 3), (1,1), (3,0), and (3,1) in the first and second.

For example, the region labeled “1” in the second square consists of points (z, 2’) =
(e*™*, 2"} with t > ¢’ and £ < ¢t+¢ < 2. One such point has (¢,#') = (1, 1). For the

278
197/8 im/8

second motion planning rule above, w = e ,w' = e™° and o is a counterclockwise

rotation from z to 2/, passing through w and w'. Thus (1) — (0) = 2, and

d(i, 1y =3 (L _1y—1,

278 3 8 2

This is illustrated in Figure 2.6.

Figure 2.6.

3. PrROOF OF THEOREM 1.1

Our proof uses the following result of general topology.

Proposition 3.1. If W is a connected bounded open set in the plane, and K is any

connected component of R? — W, then its boundary, 0K, is connected.
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This result can be found in [4, Thm 22, p. 193]. We will use the following corollary
several times. It deals with a subspace U of the unit square which is open in the

subspace topology. By U, we mean its boundary in R2

Corollary 3.2. Let U be a connected open subset of 1%, and let P and Q) be distinct
points of the boundary in OI* of U N OI?. Let B and B’ be the two components of
OI* —{P,Q}. Suppose BNU = (. Then there is a connected subset of OU — (B'NAU)
which contains P and Q).

Proof. Apply the proposition to W = U — (U N 91?), with K being the unbounded
component of R2—TW. Then dK is connected. Note that {P,Q} C 0K and UNJI? C
OK. The connected component of 9K — (U N dI?) containing P also contains ) and
is contained in OU — (B'NoU). M

Proof of Theorem 1.1. Suppose I x I is covered by two open sets V and V' equipped
with locally constant functions d and d’' satisfying (2.2), (2.3), and (2.4). We will
show that this leads to a contradiction, implying the theorem.

At least one of these, say V', must contain (0,0) and hence also the other three
corner points. Let Wi, X4, Y], and Z; be the connected components of V' containing
(0,0), (0,1), (1,0), and (1, 1), respectively. Note that each of W and Z; is symmetric,
while X; and Y] are symmetric to one another. It is possible that W, = Z;; we will
consider that as part of Case 2. We assume as Case 1 that OW; does not meet the
edges 1 x [ and I x 1.

Property (2.4) implies that d(W,) = d(Z;) = 0, and then properties (2.2) and (2.3)
imply that d(X;) = —1 and d(Y;) = 1. Let

Ji=A{x:(x,0) e Wi} ={y:(0,y) eWi}={z:(z,1) e X1} ={y: (1,y) € Y1}
and
Ki={z:(x,0)eY1} ={y: (0,y) e Xx} ={z: (z,1) € Z1} ={y: (L,y) € Z;}.
Let 1 =sup{z:z € J;} and z; = inf{z: z € K}}.

By Corollary 3.2, OW; contains a connected set C; containing (z1,0) and (0, z;).
Similarly, there are connected sets Dy, E7, and F; contained in 0.X;, 0Y;, and 07,

respectively, and containing the pairs of points (0, z1) and (z1, 1), (21,0) and (1,2),
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and (z1,1) and (1, 1), respectively. See the illustrative schematic diagram Figure 3.3
below. The cutouts just illustrate the possibility of holes in W7y, X, Y7, and Z;.

Figure 3.3.
Iy 21

A\

21 21

€

X1 21

We claim z7 < z;. Indeed, d(W;) = 0, while d(Y1) = 1, so W; and Y] are disjoint.
If z < x1, then C is a connected set separating (x,0) from all points in Y. So (z,0)
cannot be in Yj. Thus z; = inf{z : (z,0) € Y1} > ;.

If 21 = 21, then By := C;UD;UFE;UF] is a connected set disjoint from V. Thus V'
contains an open connected set U containing B;. Hence d’ is constant on U. However
d'(x1,1) — d(x1,0) = —1 with both points in U, so this is a contradiction.

Thus we may assume that z; < z;. The open set V' must contain disjoint (because
of d’) connected open sets Wo, Xy, Ys, Z5 containing Cy, Dy, E4, and F}, respectively.
Both of the sets W5 and Z, are symmetric, while Xy and Y5 are symmetric to one
another. Let x5 = sup{z : (z,0) € W)} and 2z, = inf{x : (z,0) € Y>}.

By Corollary 3.2, 0W, contains a connected set Cy containing (z5,0) and (0, z5).
As before, r1 < 19 < z5 < z;. Similarly, using symmetry, 0X5, 0Ys, and 97, contain
connected sets Dy, Eo, and Fy containing the pairs of points (0, z3) and (x9, 1), (29,0)
and (1,xz9), and (z2,1) and (1, 29), respectively.

We are in the same situation as before. If x5 = 25, then Co U Dy U E5 U F} is a
connected set disjoint from V', and so V' must contain it, yielding a contradiction on
the values d(z2,0) and d(x2,1).
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We can continue like this, obtaining connected open sets W,, X,, Y,, and Z,
alternately contained in V' and V', and connected sets C,, C dW,, such that W,
contains C,,, and similarly for X, Y, and Z. Moreover, if z,, = sup{z : (z,0) € W, }
and z, = inf{z : (2,0) € Y,,}, then

T < Ty <+ Ly S zp <00 < 29 < 27.

If, for some n, x, = z,, we stop because we have the contradiction seen above, of
obtaining a connected set with contradictory d or d' values.

If it never happens that x,, = z,, then we have a strictly increasing sequence of
numbers x,,, which must approach a limiting value xy. The point (xg,0) must have
a neighborhood N contained in either V' or V. WLOG, say N C V. But none
of the points (z9;41,0) are in V, and yet infinitely many of them are in N. This
contradiction completes the argument, showing that it is impossible to have sets V'
and V' as claimed.

Now we consider, as Case 2, the case in which W intersects all four sides of the
square. This includes the possibility that Z; = W;. A schematic diagram of sets
illustrating both possibilities for Case 2 and admitting functions d satisfying (2.2),
(2.3), and (2.4) appears in Figure 3.4.

Figure 3.4.
r1 2z Tr1 Z1
0 X q X
Z1 1 21 ! \é
Z1 T1 >
> W1 1 21
1 L1
Y1
- -
Tr1 2 T 2

The same argument applies to both of these possibilities. Let x; = sup{z : (x,0) €
Wi} and z; = inf{y : (1,y) € Wi}, as in Case 1. By Corollary 3.2, 0W; contains a
connected set C7 which contains (x1,0) and (1, 21). Again 27 < 27 since C separates

(21,0) from all (x,0) with x < x;.
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The second set in our cover, V', must contain a connected open set W5 containing
(1, and also must contain its symmetric counterpart 7(Ws) = {(x,y) : (y,x) € Wa}.
Letting d’ denote the d-function for V', we have d'(7(W3)) = —d'(W3) by (2.4). If
2 = a1, d(Wa) = d'(21,0) = 1+ d'(z1,1) = 1+ d'(7(W>)). Hence d' (W) = 1,
contradicting that d’ is integer-valued. Thus we may assume that z; < 2.

Using (2.2)-(2.4), 1 = inf{z : (2,0) € Y1} and 21 = sup{y : (1,y) € Y1}. By
Corollary 3.2, JY) contains a connected set D; containing (z1,0) and (1, ), and
then V' contains a connected open set Y5 containing D;. Using (2.2)-(2.4), d'(Ys) =
—d'(W3) + 1, so d'(Ys2) # d'(Ws), and hence W5 and Y5 are disjoint.

Let xy = sup{z : (x,0) € W} and 2o = inf{z : (2,0) € Yo}. Then 25 < z, and
similarly to xy and z;, we cannot have x5 = z5. We continue this process, obtaining
connected sets C,, and D,, and connected open sets W,, and Y,, such that C,, C 0W,,,
D, c ow,, C, C W,.1, and D, C Y, .1, and obtain a contradiction similar to
the one at the end of Case 1, using the numbers z,, = sup{z : (z,0) € W, } and
zp = inf{x : (z,0) € Y,,}. This completes the proof that the hypothesized sets V' and

V' cannot exist. N

REFERENCES

[1] I.Basabe, J.Gonzalez, Y.B.Rudyak, D.Tamaki, Higher topological complexity
and its symmetrization, Alg Geom Topology 14 (2014) 2103-2124.

[2] M.Farber, Topological complezity of motion planning, Discrete Comput. Geom
29 (2003) 211-221.

[3] M.Farber and M.Grant, Symmetric motion planning, Contemp Math 438
(2007) 85-104.

[4] R.L.Moore, Foundations of point set theory, American Math Society Collo-
quium Publications 13 (1932).

[5] Y.B.Rudyak, Topological complexity and related invariants, Morfismos 20
(2016) 1-24.

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PA 18015, USA
E-mail address: dmd1@lehigh.edu



