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Abstract. In this paper, we give a complete proof of the Poincaré and the geometrization
conjectures. This work depends on the accumulative works of many geometric analysts in the past
thirty years. This proof should be considered as the crowning achievement of the Hamilton-Perelman
theory of Ricci flow.
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Introduction. In this paper, we shall present the Hamilton-Perelman theory of
Ricci flow. Based on it, we shall give the first written account of a complete proof
of the Poincaré conjecture and the geometrization conjecture of Thurston. While
the complete work is an accumulated efforts of many geometric analysts, the major
contributors are unquestionably Hamilton and Perelman.

An important problem in differential geometry is to find a canonical metric on
a given manifold. In turn, the existence of a canonical metric often has profound
topological implications. A good example is the classical uniformization theorem in
two dimensions which, on one hand, provides a complete topological classification for
compact surfaces, and on the other hand shows that every compact surface has a
canonical geometric structure: a metric of constant curvature.

How to formulate and generalize this two-dimensional result to three and higher
dimensional manifolds has been one of the most important and challenging topics in
modern mathematics. In 1977, W. Thurston [122], based on ideas about Riemann sur-
faces, Haken’s work and Mostow’s rigidity theorem, etc, formulated a geometrization
conjecture for three-manifolds which, roughly speaking, states that every compact ori-
entable three-manifold has a canonical decomposition into pieces, each of which admits
a canonical geometric structure. In particular, Thurston’s conjecture contains, as a
special case, the Poincaré conjecture: A closed three-manifold with trivial fundamen-
tal group is necessarily homeomorphic to the 3-sphere S

3. In the past thirty years,
many mathematicians have contributed to the understanding of this conjecture of
Thurston. While Thurston’s theory is based on beautiful combination of techniques
from geometry and topology, there has been a powerful development of geometric
analysis in the past thirty years, lead by S.-T. Yau, R. Schoen, C. Taubes, K. Uhlen-
beck, and S. Donaldson, on the construction of canonical geometric structures based
on nonlinear PDEs (see, e.g., Yau’s survey papers [129, 130]). Such canonical geo-
metric structures include Kähler-Einstein metrics, constant scalar curvature metrics,
and self-dual metrics, among others. However, the most important contribution for
geometric analysis on three-manifolds is due to Hamilton.

In 1982, Hamilton [58] introduced the Ricci flow

∂gij

∂t
= −2Rij

to study compact three-manifolds with positive Ricci curvature. The Ricci flow, which
evolves a Riemannian metric by its Ricci curvature, is a natural analogue of the heat
equation for metrics. As a consequence, the curvature tensors evolve by a system of
diffusion equations which tends to distribute the curvature uniformly over the mani-
fold. Hence, one expects that the initial metric should be improved and evolve into a
canonical metric, thereby leading to a better understanding of the topology of the un-
derlying manifold. In the celebrated paper [58], Hamilton showed that on a compact
three-manifold with an initial metric having positive Ricci curvature, the Ricci flow
converges, after rescaling to keep constant volume, to a metric of positive constant
sectional curvature, proving the manifold is diffeomorphic to the three-sphere S

3 or a
quotient of the three-sphere S

3 by a linear group of isometries. Shortly after, Yau sug-
gested that the Ricci flow should be the best way to prove the structure theorem for
general three-manifolds. In the past two decades, Hamilton proved many important
and remarkable theorems for the Ricci flow, and laid the foundation for the program
to approach the Poincaré conjecture and Thurston’s geometrization conjecture via the
Ricci flow.
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The basic idea of Hamilton’s program can be briefly described as follows. For any
given compact three-manifold, one endows it with an arbitrary (but can be suitably
normalized by scaling) initial Riemannian metric on the manifold and then studies
the behavior of the solution to the Ricci flow. If the Ricci flow develops singularities,
then one tries to find out the structures of singularities so that one can perform
(geometric) surgery by cutting off the singularities, and then continue the Ricci flow
after the surgery. If the Ricci flow develops singularities again, one repeats the process
of performing surgery and continuing the Ricci flow. If one can prove there are only a
finite number of surgeries during any finite time interval and if the long-time behavior
of solutions of the Ricci flow with surgery is well understood, then one would recognize
the topological structure of the initial manifold.

Thus Hamilton’s program, when carried out successfully, will give a proof of the
Poincaré conjecture and Thurston’s geometrization conjecture. However, there were
obstacles, most notably the verification of the so called “Little Loop Lemma” con-
jectured by Hamilton [63] (see also [17]) which is a certain local injectivity radius
estimate, and the verification of the discreteness of surgery times. In the fall of 2002
and the spring of 2003, Perelman [103, 104] brought in fresh new ideas to figure out
important steps to overcome the main obstacles that remained in the program of
Hamilton. (Indeed, in page 3 of [103], Perelman said “the implementation of Hamil-
ton program would imply the geometrization conjecture for closed three-manifolds”
and “In this paper we carry out some details of Hamilton program”.) Perelman’s
breakthrough on the Ricci flow excited the entire mathematics community. His work
has since been examined to see whether the proof of the Poincaré conjecture and
geometrization program, based on the combination of Hamilton’s fundamental ideas
and Perelman’s new ideas, holds together. The present paper grew out of such an
effort.

Now we describe the three main parts of Hamilton’s program in more detail.

(i) Determine the structures of singularities
Given any compact three-manifold M with an arbitrary Riemannian metric, one

evolves the metric by the Ricci flow. Then, as Hamilton showed in [58], the solution
g(t) to the Ricci flow exists for a short time and is unique (also see Theorem 1.2.1). In
fact, Hamilton [58] showed that the solution g(t) will exist on a maximal time interval
[0, T ), where either T = ∞, or 0 < T < ∞ and the curvature becomes unbounded
as t tends to T . We call such a solution g(t) a maximal solution of the Ricci flow. If
T < ∞ and the curvature becomes unbounded as t tends to T , we say the maximal
solution develops singularities as t tends to T and T is the singular time.

In the early 1990s, Hamilton systematically developed methods to understand the
structure of singularities. In [61], based on suggestion by Yau, he proved the funda-
mental Li-Yau [82] type differential Harnack estimate (the Li-Yau-Hamilton estimate)
for the Ricci flow with nonnegative curvature operator in all dimensions. With the
help of Shi’s interior derivative estimate [114], he [62] established a compactness the-
orem for smooth solutions to the Ricci flow with uniformly bounded curvatures and
uniformly bounded injectivity radii at the marked points. By imposing an injectivity
radius condition, he rescaled the solution to show that each singularity is asymptotic
to one of the three types of singularity models [63]. In [63] he discovered (also inde-
pendently by Ivey [73]) an amazing curvature pinching estimate for the Ricci flow on
three-manifolds. This pinching estimate implies that any three-dimensional singular-
ity model must have nonnegative curvature. Thus in dimension three, one only needs
to obtain a complete classification for nonnegatively curved singularity models.
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For Type I singularities in dimension three, Hamilton [63] established an isoperi-
metric ratio estimate to verify the injectivity radius condition and obtained spherical
or necklike structures for any Type I singularity model. Based on the Li-Yau-Hamilton
estimate, he showed that any Type II singularity model with nonnegative curvature
is either a steady Ricci soliton with positive sectional curvature or the product of
the so called cigar soliton with the real line [66]. (Characterization for nonnegatively
curved Type III models was obtained in [30].) Furthermore, he developed a dimension
reduction argument to understand the geometry of steady Ricci solitons [63]. In the
three-dimensional case, he showed that each steady Ricci soliton with positive curva-
ture has some necklike structure. Hence Hamilton had basically obtained a canonical
neighborhood structure at points where the curvature is comparable to the maximal
curvature for solutions to the three-dimensional Ricci flow.

However two obstacles remained: (a) the verification of the imposed injectivity
radius condition in general; and (b) the possibility of forming a singularity modelled
on the product of the cigar soliton with a real line which could not be removed by
surgery. The recent spectacular work of Perelman [103] removed these obstacles by
establishing a local injectivity radius estimate, which is valid for the Ricci flow on
compact manifolds in all dimensions. More precisely, Perelman proved two versions
of “no local collapsing” property (Theorem 3.3.3 and Theorem 3.3.2), one with an
entropy functional he introduced in [103], which is monotone under the Ricci flow,
and the other with a space-time distance function obtained by path integral, analogous
to what Li-Yau did in [82], which gives rise to a monotone volume-type (called reduced
volume by Perelman) estimate. By combining Perelman’s no local collapsing theorem
I′ (Theorem 3.3.3) with the injectivity radius estimate of Cheng-Li-Yau (Theorem
4.2.2), one immediately obtains the desired injectivity radius estimate, or the Little
Loop Lemma (Theorem 4.2.4) conjectured by Hamilton.

Furthermore, Perelman [103] developed a refined rescaling argument (by consider-
ing local limits and weak limits in Alexandrov spaces) for singularities of the Ricci flow
on three-manifolds to obtain a uniform and global version of the canonical neighbor-
hood structure theorem. We would like to point out that our proof of the singularity
structure theorem (Theorem 7.1.1) is different from that of Perelman in two aspects:
(1) we avoid using his crucial estimate in Claim 2 in Section 12.1 of [103]; (2) we give
a new approach to extend the limit backward in time to an ancient solution. These
differences are due to the difficulties in understanding Perelman’s arguments at these
points.

(ii) Geometric surgeries and the discreteness of surgery times
After obtaining the canonical neighborhoods (consisting of spherical, necklike and

caplike regions) for the singularities, one would like to perform geometric surgery and
then continue the Ricci flow. In [64], Hamilton initiated such a surgery procedure
for the Ricci flow on four-manifolds with positive isotropic curvature and presented
a concrete method for performing the geometric surgery. His surgery procedures can
be roughly described as follows: cutting the neck-like regions, gluing back caps, and
removing the spherical regions. As will be seen in Section 7.3 of this paper, Hamilton’s
geometric surgery method also works for the Ricci flow on compact orientable three-
manifolds.

Now an important challenge is to prevent surgery times from accumulating and
make sure one performs only a finite number of surgeries on each finite time interval.
The problem is that, when one performs the surgeries with a given accuracy at each
surgery time, it is possible that the errors may add up to a certain amount which
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could cause the surgery times to accumulate. To prevent this from happening, as
time goes on, successive surgeries must be performed with increasing accuracy. In
[104], Perelman introduced some brilliant ideas which allow one to find “fine” necks,
glue “fine” caps, and use rescaling to prove that the surgery times are discrete.

When using the rescaling argument for surgically modified solutions of the Ricci
flow, one encounters the difficulty of how to apply Hamilton’s compactness theorem
(Theorem 4.1.5), which works only for smooth solutions. The idea to overcome this
difficulty consists of two parts. The first part, due to Perelman [104], is to choose the
cutoff radius in neck-like regions small enough to push the surgical regions far away
in space. The second part, due to the authors and Chen-Zhu [34], is to show that the
surgically modified solutions are smooth on some uniform (small) time intervals (on
compact subsets) so that Hamilton’s compactness theorem can still be applied. To do
so, we establish three time-extension results (see Step 2 in the proof of Proposition
7.4.1.). Perhaps, this second part is more crucial. Without it, Shi’s interior derivative
estimate (Theorem 1.4.2) may not applicable, and hence one cannot be certain that
Hamilton’s compactness theorem holds when only having the uniform C0 bound on
curvatures. We remark that in our proof of this second part, as can be seen in the
proof of Proposition 7.4.1, we require a deep comprehension of the prolongation of
the gluing “fine” caps for which we will use the recent uniqueness theorem of Bing-
Long Chen and the second author [33] for solutions of the Ricci flow on noncompact
manifolds.

Once surgeries are known to be discrete in time, one can complete the classifica-
tion, started by Schoen-Yau [109, 110], for compact orientable three-manifolds with
positive scalar curvature. More importantly, for simply connected three-manifolds, if
one can show that solutions to the Ricci flow with surgery become extinct in finite
time, then the Poincaré conjecture would follow. Such a finite extinction time re-
sult was proposed by Perelman [105], and a proof also appears in Colding-Minicozzi
[42]. Thus, the combination of Theorem 7.4.3 (i) and the finite extinction time result
provides a complete proof to the Poincaré conjecture.

(iii) The long-time behavior of surgically modified solutions.

To approach the structure theorem for general three-manifolds, one still needs
to analyze the long-time behavior of surgically modified solutions to the Ricci flow.
In [65], Hamilton studied the long time behavior of the Ricci flow on compact three-
manifolds for a special class of (smooth) solutions, the so called nonsingular solutions.
These are the solutions that, after rescaling to keep constant volume, have (uniformly)
bounded curvature for all time. Hamilton [65] proved that any three-dimensional non-
singular solution either collapses or subsequently converges to a metric of constant
curvature on the compact manifold or, at large time, admits a thick-thin decompo-
sition where the thick part consists of a finite number of hyperbolic pieces and the
thin part collapses. Moreover, by adapting Schoen-Yau’s minimal surface arguments
in [110] and using a result of Meeks-Yau [86], Hamilton showed that the boundary
of hyperbolic pieces are incompressible tori. Consequently, when combined with the
collapsing results of Cheeger-Gromov [24, 25], this shows that any nonsingular solu-
tion to the Ricci flow is geometrizable in the sense of Thurston [122]. Even though
the nonsingular assumption seems very restrictive and there are few conditions known
so far which can guarantee a solution to be nonsingular, nevertheless the ideas and
arguments of Hamilton’s work [65] are extremely important.

In [104], Perelman modified Hamilton’s arguments to analyze the long-time be-
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havior of arbitrary smooth solutions to the Ricci flow and solutions with surgery to
the Ricci flow in dimension three. Perelman also argued that the proof of Thurston’s
geometrization conjecture could be based on a thick-thin decomposition, but he could
only show the thin part will only have a (local) lower bound on the sectional cur-
vature. For the thick part, based on the Li-Yau-Hamilton estimate, Perelman [104]
established a crucial elliptic type estimate, which allowed him to conclude that the
thick part consists of hyperbolic pieces. For the thin part, he announced in [104]
a new collapsing result which states that if a three-manifold collapses with (local)
lower bound on the sectional curvature, then it is a graph manifold. Assuming this
new collapsing result, Perelman [104] claimed that the solutions to the Ricci flow
with surgery have the same long-time behavior as nonsingular solutions in Hamilton’s
work, a conclusion which would imply a proof of Thurston’s geometrization conjec-
ture. Although the proof of this new collapsing result promised by Perelman in [104]
is still not available in literature, Shioya-Yamaguchi [118] has published a proof of the
collapsing result in the special case when the manifold is closed. In the last section
of this paper (see Theorem 7.7.1), we will provide a proof of Thurston’s geometriza-
tion conjecture by only using Shioya-Yamaguchi’s collapsing result. In particular, this
gives another proof of the Poincaré conjecture.

We would like to point out that Perelman [104] did not quite give an explicit
statement of the thick-thin decomposition for surgical solutions. When we were trying
to write down an explicit statement, we needed to add a restriction on the relation
between the accuracy parameter ε and the collapsing parameter w. Nevertheless, we
are still able to obtain a weaker version of the thick-thin decomposition (Theorem
7.6.3) that is sufficient to deduce the geometrization result.

In this paper, we shall give complete and detailed proofs of what we outlined
above, especially of Perelman’s work in his second paper [104] in which many key
ideas of the proofs are sketched or outlined but complete details of the proofs are
often missing. As we pointed out before, we have to substitute several key arguments
of Perelman by new approaches based on our study, because we were unable to com-
prehend these original arguments of Perelman which are essential to the completion
of the geometrization program.

Our paper is aimed at both graduate students and researchers who want to learn
Hamilton’s Ricci flow and to understand the Hamilton-Perelman theory and its appli-
cation to the geometrization of three-manifolds. For this purpose, we have made the
paper to be essentially self-contained so that the proof of the geometrization is acces-
sible to those who are familiar with basics of Riemannian geometry and elliptic and
parabolic partial differential equations. The reader may find some original papers,
particularly those of Hamilton’s on the Ricci flow, before the appearance of Perel-
man’s preprints in the book “Collected Papers on Ricci Flow” [17]. For introductory
materials to the Hamilton-Perelman theory of Ricci flow, we also refer the reader to
the recent book by B. Chow and D. Knopf [39] and the forthcoming book by B. Chow,
P. Lu and L. Ni [41]. We remark that there have also appeared several sets of notes
on Perelman’s work, including the one written by B. Kleiner and J. Lott [78], which
cover part of the materials that are needed for the geometrization program. There
also have appeared several survey articles by Cao-Chow [16], Milnor [91], Anderson
[4] and Morgan [95] for the geometrization of three-manifolds via the Ricci flow.
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