
TOPOLOGICAL COMPLEXITY OF SOME PLANAR POLYGON
SPACES

DONALD M. DAVIS

Abstract. Using known results about their mod-2 cohomology
ring, we derive strong lower bounds for the topological complexity
of the space Mn,r of isometry classes of n-gons in the plane with
one side of length r and all others of length 1, provided that n− r
is not an odd integer.

1. Statement of results

The topological complexity, TC(X), of a topological space X is, roughly, the num-

ber of rules required to specify how to move between any two points of X. A “rule”

must be such that the choice of path varies continuously with the choice of endpoints.

(See [2, §4].) We study TC(X) where X = Mn,r is the space of isometry classes of

n-gons in the plane with one side of length r and all others of length 1. (See, e.g., [6,

§9].) Thus

Mn,r = {(z1, . . . , zn) ∈ (S1)n : z1 + · · ·+ zn−1 + rzn = 0}/O(2).

If we think of the sides of the polygon as linked arms of a robot, we might prefer the

space Mn,r, in which we identify only under rotation, and not reflection. However,

the cohomology algebra of Mn,r is better understood than that of Mn,r, leading to

better bounds on TC.

If r is a positive real number, then Mn,r is an (n−3)-manifold unless n−r is an odd

integer (e.g., [6, p.314]), and hence satisfies TC(Mn,r) ≤ 2n− 5 by [2, Cor 4.15].1 By

[5, 6.2], if n− 2k− 1 < r < n− 2k+ 1, then Mn,r is diffeomorphic to Mn,n−2k, and so
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1If n− r is an odd integer, Mn,r is not a manifold but still satisfies TC(Mn,r) ≤

2n−5. However, its cohomology algebra is not so well understood in this case, and
so we do not study it here.
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we restrict our discussion to the latter spaces. In this paper, we obtain the following

strong lower bounds for TC(Mn,n−2k). Here and throughout, all congruences are mod

2, unless specifically stated to the contrary.

Theorem 1.1. If
(
n−4
k−2

)
≡ 1, then, for all n′ ≥ n,

TC(Mn′,n′−2k) ≥

{
2n− 6 if k = 2 or n 6= 2e + 3

2n− 7 if n = 2e + 3.

Theorem 1.2. If
(
n−3
k−2

)
≡ 1 and

(
n−3
k−1

)
≡ 1, then, for all n′ ≥ n,

TC(Mn′,n′−2k) ≥ 2n− 6.

Theorem 1.3. If D ≥ 4,
(
n−2
k−1

)
≡ 1,

(
n−3
k−2

)
≡ 0, and

(
n−D
k−2

)
≡ 1, then, for all n′ ≥ n,

TC(Mn′,n′−2k) ≥ 2n− 2−D.

Theorem 1.4. If
(
n−3
k−2

)
≡ 1, then, for all n′ ≥ n,

TC(Mn′,n′−2k) ≥ 2n− k − 4.

Note that these results never apply to the case k = 1, since they require that

some binomial coefficient
(

A
k−2

)
be odd. The case k = 1 is special, as Mn,n−2 is

homeomorphic to real projective space RP n−3, for which the topological complexity

agrees with the immersion dimension, a much-studied, but not yet fully understood,

concept. See, e.g., [3], [1], or [4].

We obtain from Theorem 1.1 that TC(Mn,n−4) ≥ 2n − 6, within 1 of the upper

bound noted above. Nearly as good is

TC(Mn,n−6) ≥

{
2n− 7 if n ≡ 0 (4) or n = 2e + 3

2n− 6 otherwise,

from Theorems 1.1, 1.2, and 1.4. Also, we obtain from Theorem 1.1

TC(Mn,n−8) ≥

{
2n− 6 n ≡ 2, 3 (4)

2n− 8 n ≡ 0, 1 (4),

except that these must be decreased by 1 if n = 2e + 3 or 2e + 4.

We tabulate our lower bounds for 5 ≤ k ≤ 16 in a way which should generalize to

larger values of k. We tabulate the number d for which we can prove TC(Mn,n−2k) ≥
2n−6−d. Thus the gap between our lower bound and the upper bound noted above
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is d + 1. In the following two tables, numbers denoted as 0 are from Theorem 1.1,

while those denoted 0′ are from Theorem 1.2. Doubly-primed numbers are implied

by Theorem 1.3. The integers in the first column are from Theorem 1.4. Positive

integers which follow the last 0 in a row are implied by the 0, using n′ in Theorem

1.1. If this 0 occurs for n = 2e + 3, then it and the integers following it must be

increased by 1.

n− k mod 8
1 2 3 4 5 6 7 8

5 3 0 1′′ 2′′ 0′ 0 2 4
k 6 4 0 0 0 0 2 4 6

7 5 0 0′ 0 2 4 6 8
8 6 0 0 2 4 6 8 10

Table 1: d such that, away from n = 2e + 3, TC(Mn,n−2k) ≥ 2n− 6− d

n− k mod 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 7 0 1′′ 2′′ 3′′ 4′′ 5′′ 6′′ 0′ 0 2 4 6 8 10 12
k 10 8 0 0 0 0 0 0 0 0 2 4 6 8 10 12 14

11 9 0 0′ 0 0′ 0 0′ 0 2 4 6 8 10 12 14 16
12 10 0 0 2 4 0 0 2 4 6 8 10 12 14 16 18
13 11 0 1′′ 2′′ 0′ 0 2 4 6 8 10 12 14 16 18 20
14 12 0 0 0 0 2 4 6 8 10 12 14 16 18 20 22
15 13 0 0′ 0 2 4 6 8 10 12 14 16 18 20 22 24
16 14 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Table 2: d such that, away from n = 2e + 3, TC(Mn,n−2k) ≥ 2n− 6− d

The proofs of all these results rely on the mod 2 cohomology ring H∗(Mn,r;Z2),

first described in [6], together with the basic result that if in H∗(X ×X) there is an

m-fold nonzero product of classes of the form yi ⊗ 1 + 1⊗ yi, with yi ∈ H1(X), then

TC(X) ≥ m + 1.([2, Cor 4.40]) Throughout the paper, all cohomology groups have

coefficients in Z2.

2. Proofs

In this section we prove Theorems 1.1, 1.2, 1.3, and 1.4. We begin by stating our

interpretation of the cohomology ring H∗(Mn,n−2k).
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Theorem 2.1. Let k ≥ 2 and n > 2k.

(1) The algebra H∗(Mn,n−2k) is generated by classes R, V1, . . . , Vn−1

in H1(Mn,n−2k).

(2) The product of k distinct Vi’s is 0.

(3) If d ≤ n − 3 and S ⊂ {1, . . . , n − 1} has |S| < k, then all

monomials Re0
∏
i∈S

V ei
i with ei > 0 for i ∈ S and

∑
i≥0

ei = d are

equal. We denote this class by TS,d.

(4) If d ≤ n− k− 2, then the set consisting of all TS,d with |S| < k

is a basis for Hd(Mn,n−2k). Note that this includes the class

T∅,d = Rd.

(5) If n − k − 1 ≤ d ≤ n − 3, then Hd(Mn,n−2k) is spanned by

all classes TS,d with |S| < k subject to relations RL,d for every

subset L of {1, . . . , n−1} with n−k ≤ |L| ≤ d+1. The relation

RL,d says ∑
S⊂L

TS,d = 0.

We often abbreviate T{i},d to Ti,d, and TS,d to TS if the value of d is clear.

Proof. In [7, Theorem 1], the more general result proved in [6, Corollary 9.2] is applied

to Mn,n−2k. The first four parts of our theorem are immediate from the result stated

there, although our TS,d notation is new. The relations stated in [7] are in the form

of an ideal, whereas we prefer to make a listing of a basic set of relations. The result

of [7] says that the relations in H∗(Mn,n−2k) are the ideal generated by

(2.2)
∑
S⊂L

TS,|L|−1 for L ⊂ {1, . . . , n− 1} with n− k ≤ |L| ≤ n− 2.

Multiplying this relation by Rt gives a relation
∑
S⊂L

TS,|L|−1+t. This yields, in degree d,

exactly all of our claimed relations. Additional relations in the ideal can be obtained

by multiplying (2.2) by V`. If ` 6∈ L, this equals our RS∪{`},|L|−RS,|L|, while if ` ∈ L,

it equals 0.

Most of our proofs also utilize the following key result. Note that since Mn,n−2k is

an (n− 3)-manifold, Hn−3(Mn,n−2k) ≈ Z2.
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Lemma 2.3. In Hn−3(Mn,n−2k) ≈ Z2, any monomial in R, V1, . . . , Vn−1 equals(
n−2−t
k−1−t

)
, where t is the number of Vi’s with positive exponent. Moreover, if

(
n−2−t
k−1−t

)
≡ 1,

S ⊂ {1, . . . , n− 1} with |S| = t, n′ ≥ n, and d ≤ n− 3, then

TS,d 6= 0 ∈ Hd(Mn′,n′−2k).

Proof. The first statement was proved in [7, Theorem B]. For d = n − 3, the second

part follows from the first since the cohomology homomorphism induced by the inclu-

sion map, Hn−3(Mn′,n′−2k)→ Hn−3(Mn,n−2k), sends TS,n−3 to TS,n−3 6= 0. If d < n−3,

then TS,d is a divisor of the nonzero class TS,n−3, and hence is nonzero.

Proof of first case of Theorem 1.1. The component of

(V1 ⊗ 1 + 1⊗ V1)n−3(V2 ⊗ 1 + 1⊗ V2)n−4

in Hn−3(Mn,n−2k)⊗Hn−4(Mn,n−2k) is

(2.4)

V n−3
1 ⊗V n−4

2 +(n−3)V1V
n−4
2 ⊗V n−4

1 +
n−4∑
i=2

(
n−3
i

)(
n−4

n−3−i

)
V i
1V

n−3−i
2 ⊗V n−3−i

1 V i−1
2 .

Note that, for 2 ≤ i ≤ n− 4, V i
1V

n−3−i
2 ⊗ V n−3−i

1 V i−1
2 = T{1,2},n−3 ⊗ T{1,2},n−4, and

(2.5)
n−4∑
i=2

(
n−3
i

)(
n−4

n−3−i

)
≡ 1 + (n− 3) +

(
2n−7
n−3

)
≡

{
0 if n = 2e + 3

n otherwise.

If n = 2e + 3, (2.4) equals V n−3
1 ⊗ V n−4

2 . By Lemma 2.3, V n−3
1 =

(
2e

k−2

)
, which is 0

unless k = 2, in which case V n−4
2 is also nonzero.

For n 6= 2e + 3, using 2.1 and (2.5), (2.4) equals

(2.6)

T1,n−3 ⊗ T2,n−4 + nT{1,2},n−3 ⊗ (T1,n−4 + T{1,2},n−4) + T{1,2},n−3 ⊗ T1,n−4.

If
(
n−3
k−2

)
≡ 1, then

(
n−4
k−3

)
≡ 0, so T1,n−3 and hence also T2,n−4 are nonzero, while

T{1,2},n−3 = 0, all by Lemma 2.3, and so (2.6) is nonzero.

If, on the other hand,
(
n−3
k−2

)
≡ 0, then

(
n−4
k−3

)
≡ 1 by Pascal’s formula, so T1,n−3 = 0

and the first factor of the other terms is nonzero by Lemma 2.3. Since
(
n−4
k−2

)
6≡ 0,

the second part of 2.3 implies that T1,n−4 6= 0. Since T{1,2},n−3 6= 0 in H∗(Mn,n−2k),

we must also have T{1,2},n−4 6= 0. If n is even, (2.6) is the nonzero term g ⊗ T1,
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while if n is odd, it is the nonzero term g ⊗ T{1,2}. Here g is the nonzero element of

Hn−3(Mn,n−2k).

For n′ > n, the cohomology homomorphism induced by the inclusion Mn,n−2k →
Mn′,n′−2k implies the result for n′.

Proof of Theorem 1.2. We may assume that n is even, since if n is odd, it is impossible

to have both
(
n−3
k−2

)
≡ 1 and

(
n−3
k−1

)
≡ 1. Similarly to the proof of Theorem 1.1, we

analyze the Hn−3 ⊗Hn−4-component of

(R⊗ 1 + 1⊗R)n−3(V1 ⊗ 1 + 1⊗ V1)n−4.

Similarly to that proof, since n 6= 2e + 3, this equals

Rn−3 ⊗ T1,n−4 + T1,n−3 ⊗Rn−4.

(The second term has coefficient n− 3 ≡ 1.) Using Lemma 2.3, the hypotheses imply

that T1,n−3 and Rn−4 are nonzero, and also that
(
n−2
k−1

)
≡ 0 and hence Rn−3 ≡ 0.

Proof of Theorem 1.3. We prove that the Hn−3 ⊗Hn−D-component of

(R⊗ 1 + 1⊗R)n−3(V1 ⊗ 1 + 1⊗ V1)n−D

is nonzero. This component equals

Rn−3 ⊗ T1,n−D +
(
n−3
D−3

)
T1,n−3 ⊗Rn−D + εT1,n−3 ⊗ T1,n−D,

with ε ∈ Z2. The hypotheses imply that Rn−3 6= 0, T1,n−3 = 0, and T1,n−D 6= 0.

Proof of Theorem 1.4. The component in Hn−3 ⊗Hn−k−2 of

(2.7) (V1 ⊗ 1 + 1⊗ V1)n−3(V2 ⊗ 1 + 1⊗ V2)n−k−2

is

T1,n−3 ⊗ T2,n−k−2 + ε1T{1,2},n−3 ⊗ T1,n−k−2 + ε2T{1,2},n−3 ⊗ T{1,2},n−k−2,

with εi ∈ Z2. Since T1,n−3 6= 0 by Lemma 2.3 and the hypothesis, and all monomials

TS,n−k−2 are linearly independent by Theorem 2.1(4), we deduce that our class is

nonzero.
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Proof of second case of Theorem 1.1. We show that the Hn−4 ⊗Hn−4-component of

(V1 ⊗ 1 + 1⊗ V1)n−4(V2 ⊗ 1 + 1⊗ V2)n−4

is nonzero whenever
(
n−4
k−2

)
≡ 1. It equals

V n−4
1 ⊗ V n−4

2 + V n−4
2 ⊗ V n−4

1 +
n−5∑
i=1

(
n−4
i

)2
V i
1V

n−4−i
2 ⊗ V n−4−i

1 V i
2 .

The summation part is (
∑n−5

i=1

(
n−4
i

)
)T{1,2} ⊗ T{1,2} = 0. Thus our term is nonzero if

T1 and T2 are linearly independent in Hn−4(Mn,n−2k), and this follows from Lemma

2.8 below.

Lemma 2.8. If
(
n−4
k−2

)
≡ 1, then there is a homomorphism Hn−4(Mn,n−2k) → Z2

sending T1 to 1, other Ti to 0, and Rn−4 to 0.

Proof. For reasons of simplicity and symmetry, we seek a homomorphism φ that

sends TS to 0 if 1 6∈ S, while if 1 ∈ S, then φ(TS) = x|S| with x1 = 1, and other xr,

2 ≤ r ≤ k − 1, are elements of Z2 to be determined. By Theorem 2.1(5), these xr’s

must satisfy that
k−1∑
r=1

xr
(|L|−1

r−1

)
= 0 for n− k ≤ |L| ≤ n− 3.

The binomial coefficients here give the number of r-subsets of L which contain 1,

assuming 1 ∈ L.

Let xr =
(
n−3−r
k−1−r

)
. Since

(
n−4
k−2

)
≡ 1, the desired condition becomes

k−1∑
r=1

(
n−3−r
k−1−r

)(
`

r−1

)
= 0 for n− k − 1 ≤ ` ≤ n− 4.

Using
(−a

b

)
= ±

(
a+b−1

b

)
, this condition becomes

∑(−(n−1−k)
k−1−r

)(
`

r−1

)
= 0, where the

sum is taken over all values of r. The LHS equals
(
`−n+1+k

k−2

)
, with the range of values

of the top part of this binomial coefficient ranging from 0 to k−3, inclusive, verifying

the claim.

Other investigations similar to those of these proofs have not yielded any additional

TC results.
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