TOPOLOGICAL COMPLEXITY OF SOME PLANAR POLYGON
SPACES

DONALD M. DAVIS

ABSTRACT. Let Mn,,. denote the space of isometry classes of n-
gons in the plane with one side of length r and all others of length
1, and assume that 1 <r <n —3 and n — r is not an odd integer.
Using known results about the mod-2 cohomology ring, we prove
that its topological complexity satisfies TC(M,, ) > 2n — 6. Since
M, is an (n — 3)-manifold, TC(M,,,) < 2n — 5. So our result is
within 1 of being optimal.

1. STATEMENT OF RESULTS

The topological complexity, TC(X), of a topological space X is, roughly, the num-
ber of rules required to specify how to move between any two points of X. A “rule”
must be such that the choice of path varies continuously with the choice of endpoints.
(See [3, §4].) We study TC(X) where X = M, is the space of isometry classes of
n-gons in the plane with one side of length r and all others of length 1. (See, e.g., [7,
§9].) Here r is a real number satisfying 0 < r <n — 1, and n > 4. Thus

Mn,r = {(21; R 7Zn) € (Sl)n 21t 2 T = 0}/O<2>

If we think of the sides of the polygon as linked arms of a robot, we might prefer the
space M, ,, in which we identify only under rotation, and not also under reflection.
However, the cohomology algebra of M,,, is better understood than that of M,
leading to better bounds on TC.

If 7 is a positive real number, then M, is a connected (n — 3)-manifold unless

n —r is an odd integer (e.g., [7, p.314] or [9, p.2]), and hence satisfies
(1.1) TC(M,,) <2n—5
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by [3, Cor 4.15].' In this paper, we obtain the following strong lower bound for
TC(M,,,).

Theorem 1.2. Ifr is a real number such that 1 <r <n—3 and n —r is not an odd
integer, then TC(M,,,) > 2n — 6.

This result is within 1 of being optimal, using (1.1).

Ifn—-—3 < r < n-—1, then Mm is homeomorphic to real projective space
RP"3, for which the topological complexity is 1 greater than the immersion di-
mension, a much-studied concept, but not yet completely determined. See, e.g.,
[5], [1], or [8]. In fact, there are often large gaps between the known upper and
lower bounds for TC(RP™"3)([2]). Theorem 1.2 also applies when 0 < r < 1 if
n is odd, while if n is even and 0 < r < 1, then, as pointed out by the referee,
H*(M,,,) ~ H*(M,_11)[u]/u?, from which we can deduce TC(M,,,) > 2n — 7.

The proof of Theorem 1.2 relies on the mod 2 cohomology ring H*(M,, ,; Zs), first
described in [7]. Throughout the paper, all cohomology groups have coefficients in
Zs, and all congruences are mod 2, unless specifically stated to the contrary. To prove
Theorem 1.2, we will find 2n—7 classes y; € H'(M,,,) such that [[(y;®1+1®%;) # 0
in H"3(M,,,) ® H"4(M,,,). This implies the theorem by the basic result that if in
H*(X)® H*(X) there is an m-fold nonzero product of classes of the form y;@1+1®vy;,
then TC(X) > m + 1.([3, Cor 4.40]) We show at the end of the paper that our
cohomology result for M,, . is optimal, in that (2n —6)-fold products of (y; @ 1+1®y;)
are always 0. Thus we will have proved the following result. (See [3] or [4] for the
definition.)

Theorem 1.3. If 1 <r <n—3 and n —r is not an odd integer, the zero-divisors-
cup-length of H*(M.,,,.) equals 2n — 7.

2. PROOF

In this section we prove Theorems 1.2 and 1.3. By [6, 6.2], if, for an integer k,
n—2k—1<r <n-—2k+1, then Mm is diffeomorphic to M,w_%, and so we
Hf n — r is an odd integer, Mnyr is often not a manifold but still satisfies

TC(M,,,) < 2n — 5, by [4, Theorem 4]. However, its cohomology algebra is not so
well understood in this case, and so we do not study it here.
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restrict our discussion to the latter spaces. We begin by stating our interpretation of

the cohomology ring H*(M,, ,—ox).

Theorem 2.1. Let k > 1 and n > 2k.

(1) The algebra H*(M,, ,—o) is generated by classes R, Vi, ..., V, 4
in HY (M, ,—ox).

(2) The product of k distinct V;’s is 0.

3)Ifd <n—-3and S C {1,...,n — 1} has |S| < k, then all
monomials R HV“ with e; > 0 for i € S and Zei =d

i€s i>0
are equal. We denote this class by Tsq. This includes the class

Tya = RY.
(4) For every subset L of {1,...,n — 1} withn —k < |L| <d+ 1,
there is a relation Ry 4 which says

Y Tsa=0.

SCL
These are the only relations, in addition to those previously

described.

Proof. In [9, Theorem 1], the more general result proved in [7, Corollary 9.2] is applied
to Mn’n_zk. The first three parts of our theorem are immediate from the result stated
there, although our Ts 4 notation is new. The relations stated in [9] are in the form
of an ideal, whereas we prefer to make a listing of a basic set of relations. The result
of [9] says that the relations in H*(M,,, o) comprise the ideal generated by our
relations Ry, rj—1 with n — k < |L| < n — 2. Multiplying by various R' give all our
relations Ry, 4. Additional relations in the ideal can be obtained by multiplying R 4
by V,. If £ ¢ L, this equals our Rrugpy,a41 — Ripav1, while if £ € L, it equals 0. W

Most of our proofs also utilize the following key result, which was proved as [9,
Theorem B].

Lemma 2.2. There is an isomorphism ¢y : H" (M, _or) — Zo satisfying ¢ (Tsn_3) =
n—2—|9|
(i)

We begin our work with a useful lemma.
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Lemma 2.3. There is a homomorphism

Go H" (M pp-ok) — Zo
satisfying ¢s(Ts 1) = (1-17|3))-

Proof. We must show that ¢, sends each of the relations Ry, ,,—4 to 0. If |[L| = ¢, then

k—1
02(Ren-a) = > ()0 = - (OG5 = (0.
i=0 i
Sincen—k</{<n-—3, wehave 0 </ —n+k <k—3, and so (e;fjk) =0. N

To prove Theorem 1.2, we will find 2n — 7 classes y; € H'(M,,, o) such that
[Ty ®1+1®y;) #0in H"3(M,,,, o) @ H"4(M,,_21). There will be four cases,
Theorems 2.5, 2.11, 2.12, and 2.17. All of them use the following notation, which
pervades the rest of the paper.

Notation 2.4. Let t > 0 and k = 28 + ko, 1 < kg < 2!, andn =k +1+2'B+ D
with0 < D <2 and B> 1. Let C =ko+ D —1. Thenn=2(B+1)+C +2.

Every pair (k,n) with k£ > 2 and n > 2k yields unique values of ¢, ko, B, and D.

Theorem 2.5. Let B be odd and

c
P = Mel+len) P J[Viel+1eV)
c
(2.6) JJviet+1eV) (Rel+1e R D02

If Py denotes the component of P in H* BHD+C=V (AL, o )@ H¥ BHOFC=2(Af, o),
then (qf)l & gbg)(Pl) 7é 0e ZQ.

The product notation here, which will be continued throughout the paper, means
a product of C' distinct factors with subscripts distinct from other subscripts involved
elsewhere in the expression. Since P has 2n —7 factors, Theorem 2.5 implies Theorem
1.2 when B is odd.

Proof. Since B is odd, the third case of Lemma 2.9 applies. Note that (V;® 14+ 1 ®
V)2 =V2®1+1® V2 and that there are 2C factors of this form or V; @ 1 +1® V;
in the middle of P. When P is expanded, the only terms 7 for which (¢1 ® ¢2)(T)
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might possibly be nonzero are those containing exactly C' of these V; or V;* on each
side of the ® accompanied by a nontrivial contribution from the Vi-part. (This uses
Lemmas 2.2, 2.3, and 2.9.) Such a term 7 which contains j of the V;’s (i > 1) (and
(C —j) V2’s) on the left side of ® will be of the form

(2.7)

2t(B+1)—1 2t(B+1)—-C—2 e 2 2 pP2t(B+1)—-C—1+j—e
( ( e ) )(Qi(BSrl)f)CflJrjfe)Vl Vi - Vijvij+1 Y Vz’cR B+ TR0,

where @ is the complementary factor. Here we must have 0 < e < 2/(B+1) — 1, in
order that there are C'+ 1 distinct V; factors (including V;) on both sides of ®. For

this choice of (i,...,i¢), let W denote the sum of all such terms as e varies, with
i1,...,1c fixed. Then
2t(B+1)-2

_ 2t(B+1)—1 2t(B+1)—C—2

(61 ® d2)(W) = Z ( ( e : )(Qt(B—(f—l)—)C—H-j—e)
e=1

— (2 (B+1)-C-3 2t(B+1)—C—-2 2t(B+1)—C—-2

(2-8) = <2t(BE|—1)—)C—1+j) + (2’5(1(9-&-1)20—1-&-]’) + ( ( —C)-&-j )

The first of the three terms in the last line is what the sum would have been if the
terms with e = 0 and e = 2/(B + 1) — 1 were included, while the other two terms
are the two omitted terms. Mod 2, the first binomial coefficient is 0 by Lemma 2.10,
since the case with B = 1 and C = 2! — 2 does not satisfy n > 2k. The second
binomial coefficient in (2.8) is 0 because its bottom part is greater than its top, and

the third is 0 unless j = C. Thus there is a unique® W, namely

21(B+1)-2 c t c
W = Z eV (H V;)RQt(B-H)—e—l ® V12 (B+1)—1—¢ (H %2)R6_0_1’
e=1
with ¢ = (Qi(Bng)iw (222((%111)):?:3 ), for which ¢(W) = 1, establishing the claim in this
case. M

The following lemmas were used above.

>The uniqueness refers to the choice of which squared terms appear on the left
side of ® in (2.7), given the choice of i’s in (2.6). The choice of which values of ¢
occur in (2.6) is arbitrary, and far from unique.
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Lemma 2.9. In the notation of 2.4,

9 _ i 1 i=C+1
n—2—i
<k—1—i)5 0 k<:1<C
0 0<:<CifB is odd.

Proof. We have (7771) = (57)) with0 < D <2 Ifi=C+1, thenn —2 —i =

2!B + 2! — 1, and so the binomial coefficient is odd by Lucas’s Theorem, which we

will often use without comment. Decreasing ¢ by 1,..., D increases the top of the
binomial coefficient by that amount, yielding (2i§?B+ j};j) with 0 < j < D. Such

a binomial coefficient is even. If B is odd, decreasing i even more will leave the
binomial coefficient even, as it will be either (B+l) (]) with 5 > D or (Bgz) (]D) with

B D
j<C-2'<D. 1

Lemma 2.10. I[f0 < C <2 —2 and 0 < j < C, then, mod 2,

<2t+1(3+1)—0—3):{1 if B is a 2-power and C' = 2171 — 2

2(B+1)—C—-1+j 0 otherwise.
Proof. If C' = 2!™1 — 2. then the binomial coefficient is (2;;:3_;1) with |A] < 2'. For

A = 0 this is odd iff B is a 2-power, as is easily seen using Lucas’s Theorem. If the
bottom part of the binomial coefficient is changed from A = 0 by an amount less than
2!, the binomial coefficient is multiplied by p/q with p and ¢ equally 2-divisible. If
C = 21 — 3, then the binomial coefficient is of the form (22:;:2) with |A] < 2°. This
is even for all B, similarly to the previous case. For smaller values of C, the result

follows by induction on (decreasing) C, using Pascal’s formula. Here it is perhaps

t4+1 A
2 (B+1)-C 3) [

more convenient to think of the binomial coefficient as ( 91 (B1)—j—2

The case in which D = 0 and B is even is special because then (¢; ®¢9)(M) = 1 for
every monomial M in H"3(M,, o) ® H" (M, o), and so for any appropriate
product P, we have (¢1 ® ¢9)(P) = (2::37) = 0 (unless n — 3 is a 2-power.) So we
modify ¢s.

Theorem 2.11. In the notation of 2.4, let B be even and D = 0. There is a
homomorphism
O30 H" (M yn-ok) = Zo
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defined by
1 |S)<k-1
TS p_s) =
#s(Tsn-s) {o S| =k —1.

If
k=2
P=iel+leWn)* J[Viel+1eV) (Rel+1eR)"" 2

then (qbl & gbg)(P) =1¢€ ZQ.
Proof. To prove that ¢3 is well-defined, we must show that forn —k < /¢ <n —3, we

k—2
have Z (f) = 0. Then 2!B < ¢ < 2!'B + k — 2. Since B is even and k < 2!*!, the
1=0

k—2
2t B does not affect the binomial coefficient mod 2, and the sum becomes Z (f) for
i=0
0 < ¢ <k —2, and this equals 2°.

Since ¢1(M) = 1 for every monomial in H"3(M,,_a), (¢1 ® ¢3)(P) equals the

sum of coefficients in
E—1

L+v)" - JJa+Vvi) - 1+ Ry" 2
i=2
of all monomials of degree n — 4 which are not divisible by V;---V;_;. This equals
S1— (52— S3), where 5] is the sum of all coefficients in degree n — 4, Sy is the sum of
coefficients of terms divisible by V5 --- Vi1, and S5 is the sum of coefficients of terms
divisible by V5 ---V;_1 but not also by V;. Then S; = (2:__47) = 0 since n — 3 cannot

be a 2-power here. Also S, = (HEZ:?I;_]Z)) = (27:;%?;73) = 0 since k < 2!, Finally

for S5 the only monomial is Vo--- V4 1R 2% s0 S3=1. N

Let 1g(—) = [logy(—)]-
Theorem 2.12. Theorem 2.5 is true if B is even and C — 2'8(¢) < 21+1eD

The first few cases of this hypothesis are (D = 1 and C' € {2¢2° 4+ 1}) and
(D € {2,3} and C € {2°,2¢ + 1,2° + 2,2° + 3}).

Proof. We consider first the portion P, of the expansion of P which has Vft(BH)fl

on the left side of ®. If j (resp. g) denotes the number of other V;’s (resp. V?’s) on
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the left side of ®, then (¢; ® ¢2)(FP2) equals

c
(218) > () Cpelafd ™) (ralelio ) (eny ™).
J,9=0

The third and fourth factors here are from ¢;(—) and ¢,(—), which satisfy
2(B+1)+C—|S 2(B+1)+C—|S
01(Tsn-3) = o(Tsn-a) = (30 0s) = Caietion):
These two factors in our sum are of the form (Qt(BH)fHA) (2t(BH)7A) with —C <

2 B+D 2t B+D
A< (Cand 1< D <2'—1. In positions less than 2!, the top parts of these two

binomial coefficients differ in every position of their binary expansions, and so, due

to any position where D has a 1, one of the factors will be even. Thus (2.13) is 0 in

t{(B+1)-1

Zo. A similar argument works for the portion of the sum in which Vf is on

the right side of ®.

Arguing similarly to (2.8), it remains to show that the following sum is 1 mod 2.
c
C\ (CY (2L (B+1)+C—j—g—1\ (2t(B+1)—1—C+j
(214) > (9 QPR e )
J,9=0

(2.15) '((2t(2;t:£;8++01)—1€;§2g) + (2%21113)110):?—73‘2—29) - (Qt(gi)_égﬂ))-

Let ¢ = 1g(D). Note that t > ¢+ 1. Keep in mind that B is even. It is easy to check
that there is a nonzero summand due to the third term of (2.15) if (3, g) = (C,0), and
one due to the first term of (2.15) if t = (+1, D =21 —1, j+g = C = 22 -2 with
jeven and 0 < j < C, and B is a 2-power. The proof will be completed by showing
that other terms are nonzero iff C =242 — 1, ¢t > ¢+ 2, and |C — j — g| = 21, The
result will follow, as the total number of nonzero terms is odd in any case.

It is also easy to check that the terms of the third type give nonzero summands.
For example, let ¢ = 2, so we have D € {4,5,6,7}, C = 15, and j + g = 7 or 23.
Then 7 < 74 2¢g < 14 in the first case, and, since 7, g < 15, we have 31 < j+2g < 38
in the second case. Also t > 4 and B is even. The latter two factors in (2.14) are
(FELD-1E) — 1 Of the three terms in (2.15), the first will be even since it is either

2tB+D

(Q;t;iza) with 0 < a < 271 and 0 < B < 2%, or (312611?11’;1) with 1 <5 < 8. When

j+g =17, the second summand in (2.15) has bottom greater than top, while the third

is of the form (16’4;’15) with 1 < b < 8, hence is odd. When j 4+ g = 23, the second
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summand is of the form (116(;‘41165) with 8 < ¢ < 15, while the third has its bottom part
negative.
Now we show that all other terms in (2.14)-(2.15) are 0. Let t > ¢+ 1,2 < C <
2¢ 4+ 21 with e < ¢t. We will show
(1) If

Fo= () R IR

then Fy is odd iff (f) and (2) are odd and C'— j — g = 0 mod
21 and |C — j — g] < 2"
(2) In the cases just noted where Py is odd,

2t+1(B+1)-C-3 _ 2t(B+1)-C—2 _ (2Y(B+1)-C—2\ _
(2'16) <2t(B+§)+C)—1—j—Qg) = (Qt(B—i(-1)+C)'—1—j—2g) = ( (C—j)—2g ) =0

except in the cases noted in the paragraph following (2.14)-
(2.15).

To prove (1),let E=C —j—g. Then —C < E < C, but by symmetry, it suffices
to consider 0 < £ < O < 2/*1. It is easy to see that £ — 1 and —E — 1 both have
a 1 in the 2%position iff £ = 0 mod 2*'. Since D has a 1 in the 2%position, P, is
even unless F = 0 mod 2!, Letting £ = 271 E’, and removing the lower parts (i.e.,
< 21 of the binomial coefficients, in order that Py be odd, we need for

<2t(B +1) + 24 1(E — 1)) (2t(B +1) =24 1(E' + 1)>
2!B 2!B
to be odd. If 271 E’ > 2 the second binomial coefficient is 0. Otherwise, 21 (E’ +
1) < 2! and then both binomial coefficients are odd.

For (2), we first study how the middle coefficient in (2.16) can be odd. If t = ¢ +1,
then C'— j — g = 0, and the binomial coefficient is 0 since its bottom part is greater
than the top. Now assume t > £ + 2. Let C — j — g = —2"'K. The binomial
2;(221():]0;2) For this to be odd, in positions < 22 the 1’s in
(the binary expansion of) (C'+ 1) must be contained in those of j. For (f) to be odd,
the 1’s of j must be contained in those of C'. The only way that the 1’s of (C' + 1)

coefficient becomes (

can be contained in those of C' in these positions is if C' 4+ 1 = 0 mod 2*2. Since
C —218¢ < 21 the only such C is 272 — 1. Since —2+%2 < C — j — g < 0, we must
have C'—j — g = —2/"1. Thus the only ways the middle coefficient of (2.16) can yield

a nonzero value are those listed earlier.
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The third coefficient in (2.16) is handled similarly. If ¢ = 41, then C—j—¢g = 0 and
g = 0, yielding a claimed condition. Now assume ¢ > ¢ + 2. Let C — j — g = 271 K.
The binomial coefficient becomes (zt(BQrf;f;Z;g{__Qj_g). For this and (f) to both be
odd, either C'+ 1 = 0 mod 272 or j = C mod 22, The former condition reduces
to C =242 — 1, C —j — g = 2" similarly to the previous case. For the latter, if
C = j, then g = 0 and we obtain one of the claimed conditions. Otherwise, write
C =24+ A with 0 < A < 2min(e1D  Then we must have e > £+ 2 and j = A, and,
since ¢ = 0 mod 2! and (g) is odd, we must have g = 0 or 2°, neither of which
make (275(25):2572) odd, since e < t .

For the first coefficient in (2.16), we first consider the situation when ¢ = ¢ 4 1.
Then C'—j—g¢g = 0 and the coefficient equals (Q;i((%i?)__g:f). For this and (f) to both
be odd, we must have C' = —e mod 27! with e € {1,2}, and j even. If C' = 27! — ¢,
then the coefficient is @zﬁgig), with 0 < o, B < 271, and thus is even, due to (25).
If C = 22 — 2 (its largest possible value) and B is not a 2-power, the coefficient can

be written as (2; (;Eiff)llgl) with A > 0 and 0 < A < 2%, which is even since it splits

s (3ri) (2
Ift > 042, 1let C —j—g=2""K and write the coefficient as (zt éjfﬁ;i;f{;_).
For both this and (f) to be odd, we must have C' = —1 or —2 mod 2*2 and j even.
Since C' — 2'8¢ < 21 this implies C' = 242 — 1 or 272 — 2. The top part of the
binomial coefficient splits as 21 B + (201 — 2442 — ¢). Since |[2¢71K| < C, then

1271 K| < 21, Thus the bottom of the binomial coefficient is 2'B + « with
2t_2€+3 <ac< 2t+2€+2_2‘

Since B is even, the binomial coefficient, mod 2, splits as (QZJ;;B ) (2t+1*g+2*5) =0if
0<a<2 Thisistrueift >¢+2or (t=¢+2and a > 0). If t = {+ 2 and

a < 0, then the binomial coefficient is 0 by consideration of position 2¢+2. W

The final case for Theorem 1.2 is
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Theorem 2.17. In the notation of 2.4, and with ¢ =g D, if B is even and C'—2'8¢ >
21 et C =21 A+~ with 0 < v < 21 and m = 24(B + 1) + 271 A — 1. If

c
P = Viel+tlten)" J[Viel+1aV)
C
(2.18) -H(Vi®1—|—1®‘/i)2.(R®1+1®R)2n—7—m—30’

then (qbl & ¢2)(P) 7é 0e ZQ.

Proof. Using the methods of our previous proofs, it suffices to prove that, under the

hypotheses, with ¥ (i) = (Z:fj), the following mod-2 equivalences are valid.
(1) For all j and g,

()G + w0 —j—g+1) (125" =0
and
() (vl +g+ 1020 —j—g)(27 %5 ) =0,
(2) If (f)( JU(j+ 9+ 1)¢(2C —j — g+1) =1, then
(a) (00%) =0;
(b) (555" = 0;
(c) ( f;j;f%:’?n) =1iff g = 0 and 7 = ~, in which case

2
) +g+Dep(2C—j—g+1) =1.

The proof of (1) is similar to that for the corresponding terms in the proof of
Theorem 2.12. The third and fourth factors will be of the form (gfgj_r;) and (2;?/3_ j;x)
with 0 < D < 2!, Their product is 0 mod 2 by the same reasoning as before.

The hypothesis of (2) implies C' — j — g = 0 mod 2! and |C — j — g| < 2!, exactly
as in the proof of 2.12. Write C' — j — g = 271 K with |27 K| < 2.

Part (2a) is like the first coefficient of (2.16) except that the constraint on C' —2'¢¢
is different. The argument when t = ¢ 4 1 is the same, since the constraint did not
occur in that argument. So now assume t > ¢ + 2 and write the binomial coefficient
as (2t(2;111(ﬁ’;)2§f2}3_j). As before, for both this and ( ) to be odd, we must have
C = 22Y —e with ¢ € {1,2}. We cannot have C' = 271 —2 (which implies D = 2¢—1)
because of the assumption that C' — 218¢ > 21+1eD  Thyg 2642y < 201 — 2642 We

have 211K = 2t — 241 — p with p > 0, and then j < 2442y — ¢ — (28 — 2671 — p). and



12 DONALD M. DAVIS

hence

2€+2K+j S 2t o 2€+1 + 2€+2Y —c
On the other hand, 2K > —(2! — 21 and j > —(C — j — g) = 271K, so we
have

2£+2K +] > 2€+1K > _9t + 2€+1.

ot+2 R/ ot+1l_ol+2y .
+ 3+£—:) with

Letting B = 2B’, the binomial coefficient becomes ( 21 B4y

2@4‘1 _2£+2Y+€_2 S T S 2t+1 _2€+1 -9

If x > 0, this binomial coefficient splits, and is 0 due to (2:1 B,) If x < 0, the binomial
coefficient splits as
ot+2 B/ o+l _ 9l+2y _ 3 _ o
i) (0 s )
which is 0 since the second factor has bottom part greater than the top.

To prove (2b), with C', A, and v as in the statement of the theorem, the binomial
coefficient here is ( ) with p = 2/(B+1)—2—C—2"'A and ¢ = 2/(B+1)—1+C—j—2g.
Then ¢ —p = 2(C —j —g) +j+ 2" A+ 1. Since C —j —g > —C and is a
multiple of 2741, €' — j — g > —21A. Similarly to the previous case, this implies
200 —j—g)+j>—21A Thus ¢ — p > 0 and (5) = 0.

Finally, for (2c), the binomial coefficient becomes (Qt(B sz:?:gg*ﬂHA). For this to
be nonzero, we must have j +2g < ~. But j +g¢g = v mod 27!, and so we must have
g =0 and j = v, in which case the binomial coefficient equals 1. Clearly (f) (g) = 1.
Also, ¥(j +g+1) = (v +1) = (2%3;9;1@;%—1) =1land (20 —j—g+1) =
Y(2C —~v+1) = ( B+21,§Big1A 1) hese use the fact that, since D < 2! — 1,
C <2t 4+ 241 — 2 and hence 21!

|

A<

We close by showing that all (2n — 6)-fold products P of elements of the form
(y@1+1®y) in H* (M, op X M, a) are zero. This will complete the proof of
Theorem 1.3. First note that all such products are invariant under the involution
that interchanges factors. If m; and my are monomials of degree n — 3 in the V;’s and
R, then m; ® mg + my ® my; = 0 since m; equals either 0 or the unique nonzero class.

Thus it suffices to show that the coefficient of any 7,3 ®Ts,_3 in P is 0. We prove
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this by induction on |S|. Note that the factors which we must consider are not just
those of the form (V;® 1+1® V) and (R® 1+ 1 ® R), but also sums of these.
The coefficient of "3 ® R"3 in P is 0 if P contains any factors which do not

contain terms (R® 1+ 1® R), while if all factors contain such terms, it is (*'-7) = 0.

n—3

This initiates the induction, as |S| = 0 here. Assume that all terms Tg/ ,_3 @ Tgr ,—3
in any product P are 0 if |S’| < s. Let S be a subset with |S| = s. In P, we may omit
all terms (V; ® 1 + 1 ® V;) for which ¢ ¢ S. If this omission makes any of the factors
become 0, then the coefficient of T, _3 ® Ts,_3 is 0. Otherwise, by the induction
hypothesis, the coefficient of all Ty ,,_3 ® T'ss ,_3 with S” a proper subset of S is 0, and
since the sum of all coefficients in H"3(M,, o) @ H"3(M,,_a1) is (2::36), which

is even, the coefficient of the remaining term 7,3 ® Ts,_s must also be 0.
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