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Abstract. We use BP to obtain lower bounds for TC3pRP 2mq.

1. Introduction and results

In [2], the study of the higher (reduced) topological complexity of real projective

spaces, TCspRP
nq, was initiated, and some lower bounds were obtained using mod-2

cohomology. Since TC2pRP
nq is usually equal to the immersion dimension([6]), and

a sweeping family of strong nonimmersion results was obtained using the Brown-

Peterson spectrum BP in [3], one is led to apply BP to obtain lower bounds for

TCspP
nq for s ¡ 2. Here we initiate this study by obtaining a family of lower bounds

for TC3pRP
2mq for many values of m which are often much stronger than those

implied by cohomology. We will discuss in Section 4 how there are more results to

be obtained by these methods, but the results presented here seem to be the simplest

broad family.

Here is our main result. We write νpkq for the exponent of 2 in an integer k, and

lgpnq � rlog2pnqs with lgp0q � �1.

Theorem 1.1. If r ¥ 0, t ¥ 2, and m � 2t�rp4n � 3q � ∆ with 2r ¤ ∆   1
3
p2t�r �

2r�2 � 1q, let

Cn :�

�
6n� 2lgpnq�2 � 4

2n� 1



and C∆,r :�

#�
3∆�1�2r�2

∆�2r�1

�
∆ ¥ 2r�1�

3∆�1
∆

�
2r ¤ ∆   2r�1.

If νpCnq � 2r and νpC∆,rq � 0, then TC3pRP
2mq ¥ 6m� 14 � 2r.

A more intuitive description of some of these conditions can be given in terms of

binary expansions. Recall that Fibbinary numbers are those having no adjacent 1’s
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in their binary expansion; equivalently, they are the numbers n such that
�

3n
n

�
is odd.

The Fibbinary numbers arise here, as well as others that we call “almost Fibbinary.”

Let εjpnq denote the entries in the binary expansion of n, so that n �
°
εjpnq2

j.

Definition 1.2. For a nonnegative integer e, AFe is the set of positive integers n

such that εepnq � 1, and if j � e, then εjpnq � εj�1pnq   2. (Note that εe�1pnq may

equal either 0 or 1.)

In Section 2, we will prove the following results, involving notation from Theorem

1.1.

Proposition 1.3. νpCnq � 1 iff n � 0, while νpCnq � 2 iff n � 1 or n is a Fibbinary

number divisible by 4.

Proposition 1.4. For r ¥ 0, νpC∆,rq � 0 if and only if ∆ is even and#
∆ P AFr�1 YAFr ∆ ¥ 2r�1

∆ is Fibbinary 2r ¤ ∆   2r�1.

There are no even numbers in AF0, while the first few even numbers in AF1 are

2, 6, 10, 18, and 22, and the even numbers in AF2 are just twice those in AF1.

Using this, we easily see that the first few numbers m for which Theorem 1.1 implies

TC3pRP
2mq ¥ 6m� 14 are

14, 26, 50, 54, 98, 102, 106, 194, 198, 202, 210, 214,

and the first few for which Theorem 1.1 implies TC3pRP
2mq ¥ 6m� 28 are

58, 60, 114, 116, 118, 154, 156, 226, 228, 230, 234, 236.

These results are all stronger than the results implied by cohomology, as we will

discuss more thoroughly in Section 3, where we give an interesting description of

all bounds implied by cohomology. For example, when m � 236, we prove that

TC3pP
2mq ¥ 1388, while cohomology only gives TC3pP

2mq ¥ 1022. The smallest m

for which Theorem 1.1 applies with r � 2 (resp. r � 3) is 372 (resp. 10984).

2. Proofs

The first step of our approach follows suggestions of Jesus González, and is similar

to work in [2]. We write it here for TC3; there is an obvious adaptation to TCs, which
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we hope to consider in the future. Let P n denote the real projective space. There are

canonical elements X1, X2, and X3 in BP 2pP n � P n � P nq.

Theorem 2.1. If pX1�X2q
apX2�X3q

b � 0 P BP �pP n�P n�P nq, then TC3pP
nq ¥

2a� 2b.

Proof. Let pP nqr0,1s denote the space of paths in P n, and

Ppn,n,nq � pSn � Sn � Snq{ppz1, z2, z3q � p�z1,�z2,�z3qq

the projective product space.([5]) There is a pZ2�Z2q-cover Ppn,n,nq
π
ÝÑ P n�P n�P n,

which is classified by a map P n � P n � P n µ
ÝÑ P8 � P8 � BpZ2 � Z2q. The

map pP nqr0,1s
p
ÝÑ P n � P n � P n defined by σ ÞÑ pσp0q, σp1

2
q, σp1qq lifts to a map

pP nqr0,1s
rp

ÝÑ Ppn,n,nq. A definition of TC3pP
nq is as the sectional category secatppq.

The lifting rp implies that secatppq ¥ secatpπq.

Let BkpZ2 � Z2q � �
k�1pZ2 � Z2q{pZ2 � Z2q, where �k�1 denotes the pk � 1q-fold

iterated join; this is the kth stage in Milnor’s construction of BpZ2�Z2q, with a map

ik : BkpZ2 � Z2q Ñ BpZ2 � Z2q. By [7, Thm 9, p. 86], as described in [2, §4], µ lifts

to a map P n � P n � P n rµ
ÝÑ BsecatpπqpZ2 � Z2q.

pP nqr0,1s Ppn,n,nq BkpZ2 � Z2q

P n � P n � P n BpZ2 � Z2q

rp

p
π ik

µ

rµ

By [2, Prop 3.1], µ classifies pp�1pξq b p�3pξqq � pp�2pξq b p�3pξqq, and so, by [1, Prop

3.6], the induced homomorphism

BP �pP8 � P8q
µ�
ÝÑ BP �pP n � P n � P nq

satisfies µ�pXiq � uipXi � X3q for i P t1, 2u, with ui a unit. Since µ� � rµ�i�k and

BkpZ2 � Z2q is k-dimensional, µ�pXa
1X

b
2q � 0 if 2a � 2b ¡ k, implying the theorem.

Let I denote the ideal pv0, v1, v2, v3q � BP �. Recall v0 � 2 and |v3| � 14. In

BP �pXq, let Fs denote the BP �-submodule Is �BP �pXq. Let Pps1, s2, s3q denote the

set consisting of the six permutations of distinct integers s1, s2, and s3. In [4, Cor
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2.4], it is proved that in BP �pP 2m � P 2m � P 2mq, for r ¥ 0 and integers `1, `2, and

`3,

22rX`1
1 X

`2
2 X

`3
3 � v2r

3

¸
X`1�i

1 X`2�j
2 X`3�k

3 mod F2r�1, (2.2)

where the sum is taken over all pi, j, kq in Pp2r, 2r�1, 2r�2q. Some similar results were

obtained in [9], where it was noted that by the (proven) Conner-Floyd conjecture,

vd3X
m
1 X

m
2 X

m
3 � 0 for any nonnegative integer d. We use these observations to deduce

the following result.

Proposition 2.3. Let r ¥ 0, and suppose a � b � 3m � 7 � 2r and ν
��
a
i

��
b
j

��
¥ 2r

for all i, j ¤ m which satisfy also that i � j ¥ 2m � 7 � 2r. Suppose also that an odd

number of the numbers ν
��

a
m�k

��
b

m�k1

��
are equal to 2r, as pk, k1q ranges over the six

ordered pairs in t2r, 2r�1, 2r�2u. Then TC3pP
2mq ¥ 6m� 14 � 2r.

Proof. Let h � 2r in this proof. The result follows from Theorem 2.1 once we show

that

pX1 �X3q
apX2 �X3q

b � 0 P BP 6m�14hpP 2m � P 2m � P 2mq.

This expands as
¸
i,j

�
�
a
i

��
b
j

�
X i

1X
j
2X

3m�7h�i�j
3 , for values of i and j described in the

proposition. By (2.2), this equals, mod Fh�1,

vh3
¸
i,j

¸
k,k1

�2�h
�
a
i

��
b
j

�
X i�k

1 Xj�k1

2 X3m�i�j�k�k1

3 .

These terms are 0 unless i � m� k and j � m� k1, since they would contain a factor

X` with ` ¡ m. We are left with�¸
k,k1

�2�h
�

a
m�k

��
b

m�k1

��
vh3X

m
1 X

m
2 X

m
3

with pk, k1q as above, and this is nonzero by the hypothesis and the remark just

preceding the theorem.

Theorem 1.1 is an almost immediate consequence of Proposition 2.3 and the fol-

lowing combinatorial result.

Theorem 2.4. With m, r, t, n, and ∆ as in Theorem 1.1, let a � 2t�r�lgpnq�3�2r�1

and a� b � 3m� 7 � 2r. Then
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a. If m� 7 � 2r ¤ j ¤ m, then ν
�
b
j

�
¥ 2r.

b. Mod 2,
�

a
m�2r�1

�
�
�

a
m�2r�2

�
�
�

a
m�2r

�
.

c. ν
��

b
m�2r�1

�
�
�

b
m�2r�2

��
� 2r.

To see that this implies the hypotheses of Proposition 2.3 and hence Theorem 1.1,

one needs just to check that the conditions on i and j in 2.3 imply the range for j in

(a.), and that (b.) and (c.) imply the hypothesis in 2.3 about the divisibility of the

six numbers
�

a
m�k

��
b

m�k1

�
.

We will often use without comment Lucas’s Theorem regarding binomial coefficients

mod 2, and that

ν
�
m
n

�
� αpnq � αpm� nq � αpmq,

where αp�q denotes the number of 1’s in the binary expansion.

Proof of 2.4.a. Write b � 2t�rB1 �B2 and j � 2t�rJ1 � J2, with

B1 � 12n� 2lgpnq�3 � 8, B2 � 3∆� 1� p2t � 6q2r,

J1 � 4n� 2, J2 � 2t�r �∆� d with 0 ¤ d ¤ 7 � 2r.

The upper bound on ∆ implies that B2   2t�r�2 and J2   2t�r�1, so the binary

expansions of B1 and J1 split as above if J2 ¥ 0 (since we also have B2 ¥ 0), and

hence ν
�
b
j

�
¥ ν

�
B1

J1

�
¥ 2r, by assumption. This will be the case if t ¡ 2.

If J2   0 (whence t � 2 and d ¡ 5 � 2r), write j as 22�rp4n � 1q � J 1
2 with

J 1
2 � p23�r �∆� dq ¡ 0, and note that αpjq � αpJ1q � αpJ 1

2q. Then

ν
�
b
j

�
� ν

�
B1

J1

�
� αp23�r �∆� dq � αp2∆� 1� d� 6 � 2rq � αp3∆� 1� 2r�1q

� ν
�
B1

J1

�
� ν

�
3∆�1�2r�1

23�r�∆�d

�
� αp3∆� 1� 2r�1q � αp3∆� 1� 2r�1q

¥ 2r,

since 3∆� 1� 2r�1   3 � 2r�2, so adding 2r�2 to it cannot decrease its αp�q.

Proof of 2.4.b. The mod 2 value of
�
a
`

�
equals 1 � εrp`q, provided ` ¤ a. Part (b)

follows immediately.

Proof of 2.4.c. Write b � 2t�rB1�B2 as in the proof of part a, and, for ε P t1, 2u, write

m�2r�ε � 2t�rp4n�2q�Mε with Mε � ∆�2r�ε�2t�r. We have 0 ¤Mε   2t�r�1, so
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ν
�

b
m�2r�ε

�
¥ 2r with equality iff

�
B2

Mε

�
is odd. Thus ν

��
b

m�2r�1

�
�
�

b
m�2r�2

��
¥ 2r with

equality iff
�
B2

M1

�
�
�
B2

M2

�
is odd. Mod 2, by iterating Pascal’s formula, this latter sum

is
�
B2�2r�1

M1

�
�
�

3∆�1�2r�2�2t�r

∆�2r�1�2t�r

�
. If ∆ ¥ 2r�1, then both 3∆�1�2r�2 and ∆�2r�1 lie

in the interval r0, 2t�rq, and so this binomial coefficient, mod 2, equals
�

3∆�1�2r�2

∆�2r�1

�
,

which is odd by hypothesis.

If 2r ¤ ∆   2r�1, we claim that
�

3∆�1�2r�2�2t�r

∆�2r�1�2t�r

�
is odd iff

�
3∆�1

∆

�
is odd. If

�
3∆�1

∆

�
is even, it is due to a 0 over 1 in some position less than 2r�1, and the added terms

do not affect that in the other binomial coefficient. If
�

3∆�1
∆

�
is odd, then ∆ is a

Fibbinary number, and so 2r�1 ¤ 3∆ � 1   2r�2. Thus εip3∆ � 1 � 2r�2 � 2t�rq �

1 � εip∆ � 2r�1 � 2t�rq for r � 1 ¤ i   t � r, and earlier positions will be the same

as 3∆� 1 and ∆. Thus
�

3∆�1�2r�2�2t�r

∆�2r�1�2t�r

�
is odd.

Finally, we prove Propositions 1.3 and 1.4.

Proof of Proposition 1.3. We easily check the exceptional cases n � 0 and n � 1, and

write n � 2e � d with 0 ¤ d   2e. Let F denote the set of Fibbinary numbers. Note

that n P F iff d P F and 3d   2e, since the largest n P F is 2e� 2e�2 � � � � . We study

V � ν

�
6n� 2lgpnq�2 � 4

2n� 1



� ν

�
2e�1 � 6d� 4

2e�1 � 2d� 1



� αp2e�1 � 2d� 1q � αp4d� 3q � αp2e � 3d� 2q

� 2αpdq � 4� αp2e � 3d� 2q.

If 3d� 2   2e or 3d� 2 ¥ 2e�1, then V � 2αpdq � 3� αp3d� 2q. Since

αp3d� 2q

#
� αp3dq � 1 d � 0, 3 p4q

  αp3dq � 1 d � 1, 2 p4q,

we obtain that for these d,

V

#
� ν

�
3d
d

�
� 2 d � 0, 3 p4q

¡ ν
�

3d
d

�
� 2 d � 1, 2 p4q.

Since n has adjacent 1’s if d � 3 p4q or if 3d ¥ 2e�1, this proves the claim for 3d�2   2e

or 3d� 2 ¥ 2e�1.
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If 2e ¤ 3d � 2   2e�1, then αp2e � 3d � 2q � αp3d � 2q, so V is 1 larger than

in the above cases; hence V ¥ 3. By the earlier “Note,” n R F for d in this range,

completing the proof.

Proof of Proposition 1.4. The second case is elementary, so we focus on the first.

Let Pr denote the statement that for n ¥ 2r,
�

3n�1�2r�1

n�2r

�
is odd iff n is even and

n P AFr�1 YAFr, and let Qr denote the statement that
�

3n�2r�1

n�2r

�
is odd iff n P

AFr�1 YAFr. We prove both Pr and Qr by induction on r. It is easy to see that, for

r ¥ 2, Qr�1 implies Pr, and that Qr�1 and Pr�1 imply Qr. We prove the second. The

first is similar and easier.

If n � 2n1, then
�

3n�2r�1

n�2r

�
�
�

3n1�2r

n1�2r�1

�
. By Qr�1, this is odd iff n1 P AFr�2 YAFr�1

iff n P AFr�1 YAFr. If n � 2n1 � 1, then
�

3n�2r�1

n�2r

�
�
�

3n1�1�2r

n1�2r�1

�
. By Pr�1, this is odd

iff n1 is even and n1 P AFr�2 YAFr�1, and this is true iff n P AFr�1 YAFr. Note that

if n1 is odd, then n � 3 p4q, so n R AFr�1 YAFr.

It remains to prove P1 and Q1. We prove Q1. Proving P1 is similar and slightly

easier. We must prove that for n ¥ 2,
�

3n�4
n�2

�
is odd iff n is odd and

�
3pn�1q
n�1

�
is odd,

or n � 2 p4q and
�

3pn�2q
n�2

�
is odd. If n � 2n1 � 1, we need that

�
6n1�1
2n1�1

�
�
�

6n1

2n1

�
, which

is true since they differ by a factor 6n1

2n1
. If n � 0 p4q,

�
3n�4
n�2

�
is even. If n � 4n1 � 2,

then the result follows from the true statement
�

12n1�2
4n1

�
�
�

12n1

4n1

�
.

3. Results obtained using mod-2 cohomology

In [2], some lower bounds obtainable using mod-2 cohomology were discussed, but

complete results were not obtained. Here we obtain the complete result for lower

bounds for TC3pRP
nq obtainable using Z2-cohomology, which involve an interesting

new family of numbers. The following result was noted in [2].

Proposition 3.1. Let Zpnq denote the largest integer s such that there exists an

integer a with pX1�X3q
apX2�X3q

s�a � 0 P H�pP n�P n�P n;Z2q. Then TC3pP
nq ¥

Zpnq.

We determine Zpnq in terms of some new numbers zn, which we now define.

Definition 3.2. Let zn denote the largest number z ¤ 3n� 1 such that
�
z
n

�
is odd.
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The first few values of zn are given in Table 1.

Table 1. Values of zn

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
zn 1 3 7 7 13 15 15 15 25 27 31 31 31 31 31 31 49 51 55 55

A formula for zn can be given in terms of the binary expansion of n.

Proposition 3.3. Let F denote the set of Fibbinary numbers (those n with
�

3n
n

�
odd).

If n P F , then zn � 3n � 1 if n is even, and 3n if n is odd. Otherwise, let e be the

largest integer such that εepnq � 1 � εe�1pnq, so that n � A � B, with A P F and A

divisible by 2e�2 and 3 � 2e�1 ¤ B   2e�1. Then zn � 3A� 2e�2 � 1.

Proof. It is clear when n P F . If n � A � B and w � 3A � 2e�2 � 1, clearly
�
w
n

�
is odd, and w   3n � 1 since 2e�2 � 1   3 � 3 � 2e�1. Any v larger than w and

¤ 3n � 1 will have pv mod 2e�1q   pn mod 2e�1q and hence
�
v
n

�
even. To see this,

write B � 2e � 2e�1 � ` with `   2e�1. Then pv mod 2e�1q ¤ 2e�1 � 3`� 1 while pn

mod 2e�1q � 2e � 2e�1 � `. The result follows since 2`� 1   2e.

The relevance of zn is given by the following result, involving the numbers Zpnq of

Proposition 3.1.

Theorem 3.4. If n � 2e�d with 0 ¤ d   2e, then Zpnq � 3 �2e�1�minpzd, 2
e�1q.

Proof. First note that Zpnq is the largest a� b such that there exist integers i, j ¤ n

such that
�
a
i

��
b
j

�
is odd and i � j ¥ a � b � n. With m � minpzd, 2

e � 1q, setting

a � 2e�1 � 1, b � 2e � m, and i � j � n shows that 3 � 2e � 1 � m ¤ Zpnq. [[The

condition i� j ¥ a� b� n follows from 3d� 1 ¥ m.]]

We now show that a�b cannot be increased from the above values. If a is increased

to a number ¥ 2e�1, then
�
a
i

�
odd implies

�
a�2e�1

i

�
odd. Thus

a� b� n ¤ i� j ¤ pa� 2e�1q � b,

contradicting n   2e�1. On the other hand, if b is increased to 2e�k with k ¡ zd, and

j � 2e�` with ` ¤ d, then k ¤ 2d�`�1. [[This follows from a�b�n ¤ i�j ¤ n�j.]]

By definition of zd, we have
�
t
d

�
even for zd   t ¤ 3d � 1. Hence Pascal’s formula
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implies inductively that
�
k
d�δ

�
is even for zd   k ¤ 3d � 1 � δ. Letting ` � d � δ, we

obtain that
�
k
`

�
is even for k and ` as above, and hence so is

�
b
j

�
.

Values of Zp2mq for 32 ¤ m ¤ 63 appear in the second column of Table 2. These

values for m � 32� d are 191�minpz2d, 63q.

4. Obtaining more results

In this section, we discuss briefly how we might obtain additional results using

BP . One obvious thing to do is to study products of more than three copies of

RP 2m; i.e., TCspRP
2mq for s ¡ 3. Our approach should extend without significant

change. For TC3p�q itself, there are three other things that we might try.

One way in which we might expand our results is by considering non-2-power

divisibilities for our obstructions. In [4], there is a result which implies an analogue

of our Proposition 2.3 when 2r is replaced by an arbitrary positive integer h. It is

more complicated with respect to the pairs pk, k1q which must be considered there,

and so we have not pursued it.

Another way, which we would hope to pursue, is to use values of a in Proposition

2.3 other than the 2lgpmq�1 � 2r � 1 which we used in proving Theorem 1.1. For r � 0

and 1, we have run Maple programs to find all m   256 and a for which the hypothesis

of Proposition 2.3 holds. There are many, but finding generalizable patterns to prove

is not an easy task. One that apparently works for r � 0, but does not seem to have

an analogue for larger r, is that for all the values of m for which Theorem 1.1 applied

with r � 0, using a � 2lgpmq�1 � 2, we can use a � 2lgpmq�1 � 3 for m1 � m � 1 to

prove TC3pRP
2m1

q ¥ 6m1� 14. In addition to the values of m for which Theorem 1.1

implies TC3pRP
2mq ¥ 6m � 14, which were listed in Section 1, and the values of m

one less than these, the following values of m   256 admit values of a which enable

us to deduce this conclusion.

10, 18, 21, 22, 34, 37, 38, 41, 42, 66, 69, 70, 73, 74, 81, 82, 85, 86, 101, 102, 105,

106, 130, 133, 134, 137, 138, 145, 146, 149, 150, 161, 162, 165, 166, 169, 170

Similarly there are 36 values of m   256 for which we can use r � 1 in Proposition

2.3 to prove TC3pRP
2mq ¥ 6m� 28, in addition to those implied by Theorem 1.1.
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For 32 ¤ m ¤ 63, we list in Table 2 the lower bounds for TC3pP
2mq implied by

H�p�;Z2q and by BP with r � 0 and 1, using all values of a, not just the one used

in Theorem 1.1. Note that cohomology gives a better estimate in the first 17 cases,

and BP in the last 15.

Another way of obtaining more results would be to consider relations in BP �pRP n�

RP n�RP nq totally different than those used in Proposition 2.3. In [3], all relations in

BP 2�pRP n�RP nq were obtained and used. This seems daunting for larger products.
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BOUNDS FOR HIGHER TOPOLOGICAL COMPLEXITY 11

Table 2. Lower bounds for TC3pP
2mq implied by

H�p�q and BP

m H�p�q r � 0 r � 1
32 192 142 152
33 198 142 152
34 204 190 152
35 206 190 152
36 216 190 152
37 222 208 152
38 222 214 152
39 222 214 152
40 240 214 152
41 246 232 152
42 252 238 152
43 254 238 152
44 254 238 236
45 254 238 236
46 254 238 248
47 254 238 248
48 254 238 248
49 254 280 248
50 254 286 248
51 254 286 248
52 254 286 284
53 254 304 284
54 254 310 296
55 254 310 296
56 254 310 296
57 254 310 296
58 254 310 320
59 254 310 320
60 254 310 332
61 254 310 332
62 254 310 332
63 254 310 332


