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Abstract. We determine the BP∗-module structure, mod higher
filtration, of the main part of the BP -homology of elementary 2-
groups. In doing this, we show, using algebraic topology, that
certain Vandermonde-type systems of equations, mod 2, have so-
lutions that are symmetric polynomials. We then show that in
analogous situations not covered by our theorem, instead of poly-
nomials, the solution involves infinite series containing many neg-
ative exponents. Equivalently, we have similar results regarding
whether quotients of Schur polynomials are polynomials mod 2.

1. Introduction and results

Let BP∗(−) denote Brown-Peterson homology localized at 2. Its coefficient groups

BP∗ are a polynomial algebra over Z(2) on classes vj, j ≥ 1, of grading 2(2j − 1).

Let v0 = 2. There are BP∗-generators zi ∈ BP2i−1(BZ/2) for i ≥ 1. As was done

in [2] and [4], we consider
⊗k

BP∗
BP∗(BZ/2), which is a BP∗-direct summand of

BP∗(B(Z/2)k). This contains classes zI = zi1 ⊗ · · · ⊗ zik for I = (i1, . . . , ik) with

ij ≥ 1. Let Zk denote the set consisting of all such classes zI . It was proved in [2,

Thm 3.2] that
⊗k

BP∗
BP∗(BZ/2) admits a decreasing filtration by BP∗-submodules

Fs such that, for s ≥ 0, the quotient Fs/Fs+1 is a Z/2-vector space with basis all

classes (vtkk v
tk+1

k+1 · · · )zI with zI ∈ Zk and
∑
ti = s.

Define an action of Z/2[x1, . . . , xk] on the Z/2-vector space with basis Zk by

xe11 · · ·x
ek
k · zI = zI−E, where I − E = (i1 − e1, . . . , ik − ek). Note that zJ = 0 if

any entry of J is ≤ 0.
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Our first theorem determines the action of vj, 0 ≤ j ≤ k − 1, from Fs/Fs+1 to

Fs+1/Fs+2, obtained as the solution of a system of linear equations. This theorem

and the next one will be proved in Section 2.

Theorem 1.1. If Fs is as above, and 0 ≤ j ≤ k − 1, the action of vj from Fs/Fs+1

to Fs+1/Fs+2 is multiplication by
∑
`≥k

v`pj,k,`, where pj,k,` are mod-2 symmetric poly-

nomials in x1, . . . , xk satisfying the mod-2 system

(1.2)

1 x1 x31 · · · x2
k−1−1

1
...

1 xk x3k · · · x2
k−1−1
k


 p0,k,`

...
pk−1,k,`

 =

x
2`−1
1
...

x2
`−1
k

 .
It is not a priori clear that the system (1.2) should have a polynomial solution,

mod 2. In fact, as we will show in Theorem 1.3, if the exponents on the RHS of (1.2)

are replaced by an integer ≥ 2k−1 which is not of the form 2` − 1 for some `, then

(1.2) does not have a polynomial solution mod 2. Part of the content of Theorem

1.1 is that the system (1.2) has a polynomial solution mod 2, and the essence of the

proof is algebraic topology.

Theorem 1.3. Let k ≥ 3 and t ≥ 2k−1. Let

A =

1 x1 x31 · · · x2
k−1−1

1
...

1 xk x3k · · · x2
k−1−1
k

 and B =

xt1...
xtk

 .
The mod-2 system AX = B has a solution X whose entries are symmetric polynomials

in x1, . . . , xk iff t+ 1 is a 2-power.

A solution of (1.2) or the equation of Theorem 1.3 as a quotient of symmetric

polynomials can, of course, be given by Cramer’s Rule. The determinants that ap-

pear in this quotient are related to Schur polynomials, and so Theorem 1.3 may be

interpreted as a result about quotients, mod 2, of Schur polynomials. ([6, p.335])

Definition 1.4. If m1 ≥ m2 ≥ . . . ≥ mk, the Schur polynomial sm1,...,mk
(x1, . . . , xk)

is defined by the equation

sm1,...,mk
(x1, . . . , xk)·

∏
1≤i<j≤k

(xj−xi) =

∣∣∣∣∣∣∣
xm1+k−1
1 xm2+k−2

1 · · · xmk+0
1

...
xm1+k−1
k xm2+k−2

k · · · xmk+0
k

∣∣∣∣∣∣∣ .
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The following corollary is immediate from Theorem 1.3 and Cramer’s Rule.

Corollary 1.5. For k ≥ 3, let I = (2k−1 − 1, . . . , 3, 1), J = (k − 1, . . . , 1, 0), and for

i ∈ {0, . . . , k − 1} and t ≥ 2k−1, let Ii,t be obtained from I by removing 2i − 1 and

placing t at the beginning. Then the quotient sIi,t−J/sI−J of Schur polynomials is a

polynomial mod 2 iff t+ 1 is a 2-power.

We have obtained explicit solutions of (1.2) in several cases. These will be proved

in Section 3. The first is the complete solution when k = 3.

Theorem 1.6. Let mi,j,k denote the monomial symmetric polynomial in x1, x2, and

x3; i.e., the smallest symmetric polynomial containing xi1x
j
2x

k
3. The solution of (1.2)

when k = 3 and ` ≥ 3 is given by

p0,3,` =
∑

i≥j≥k>0
i+j+k=2`−1

(
j+k
k

)
mi,j,k

p1,3,` =
∑
i≥j>0

i+j=2`−2

(1 + j)mi,j,0 +
∑

i≥j≥k>0
i+j+k=2`−2

(1 +
(
j+k
k−1

)
+
(
j+k+1
k+1

)
)mi,j,k

p2,3,` =
∑

i≥j≥k≥0
i+j+k=2`−4

(1 +
(
j+k+2
k+1

)
)mi,j,k.

Incorporating Theorem 1.6 into Theorem 1.1 gives the v0-, v1-, and v2-action, mod

higher filtration, in BP∗(BZ/2)⊗BP∗ BP∗(BZ/2)⊗BP∗ BP∗(BZ/2). For example, v0

acts as

(1.7) v3m4,2,1+v4(m12,2,1+m10,4,1+m8,6,1+m9,4,2+m8,5,2+m8,4,3)+· · · ,

where the omitted terms involve v` for ` ≥ 5. The subscripts of the v3- and v4-terms

for the v2-action appear in the sentence containing (4.1).

We have also obtained the explicit solution of (1.2) for any k if ` = k.

Theorem 1.8. The solution of (1.2) when ` = k has pj,k,k equal to the sum of all

monomials of degree 2k−2j in x1, . . . , xk in which all nonzero exponents are 2-powers.

Here 0 ≤ i ≤ k − 1.

This gives the formula for the vk-component of the BP∗-module structure, mod-

ulo higher filtration, of
⊗k

BP∗
BP∗(BZ/2). It is complete information, mod higher
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filtration, for BP 〈k〉 homology. Johnson-Wilson homology BP 〈k〉 has coefficients

Z(2)[v1, . . . , vk].([3])

Corollary 1.9. In
⊗k

BP 〈k〉∗ BP 〈k〉∗(BZ/2), for 0 ≤ j ≤ k − 1,

vj · zI ≡ vk
∑
E

zI−E

mod higher filtration, where E = (e1, . . . , ek) ranges over all k-tuples such that all

nonzero ej are 2-powers, and
∑
ej = 2k − 2j.

This generalizes [4, Cor 2.7], which says roughly that v0 acts as vkm2k−1,2k−2,...,1.

Finally, our most elaborate, and probably most useful, explicit calculation is given

in the following result, which gives the complete formula for the v0-action, mod higher

filtration. This is useful since v0 corresponds to multiplication by 2.

Theorem 1.10. In
⊗k

BP∗
BP∗(BZ/2), v0 acts as

∑
`≥k

v` · p0,k,`(x1, . . . , xk), where

p0,k,` =
∑
f

`−1∏
i=0

x2
i

f(i),

where f ranges over all surjective functions {0, . . . , `−1} → {1, . . . , k}. Equivalently,

p0,k,` =
∑
m|S1|,...,|Sk|, where the sum ranges over all |S1| > · · · > |Sk| with S1, . . . , Sk

a partition of {1, 2, 4, . . . , 2`−1} into k nonempty subsets.

See (1.7) for an explicit example when k = 3.

2. Proof of Theorems 1.1 and 1.3

In this section, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. Let Q =
⊗k

BP∗
BP∗(BZ/2). Let zi and zI be as in the first

paragraph of the paper. By [2], Q is spanned by classes (vt00 v
t1
1 · · · )zI with only

relations
∑

j≥0 ajzi−j in any factor, where aj ∈ BP2j are coefficients in the [2]-series.

By [7, 3.17], these satisfy, mod (v0, v1, . . .)
2,

aj ≡

{
vi j = 2i − 1, i ≥ 0

0 j + 1 not a 2-power.



BP -HOMOLOGY AND SYMMETRIC POLYNOMIALS 5

Let Fs denote the ideal (v0, v1, . . .)
sQ. Then Fs/Fs+1 is spanned by all (vt00 v

t1
1 · · · )zI

with
∑
tj = s, with relations

(2.1)
∑
j≥0

vjzi−(2j−1) = 0

in each factor. As proved in [2, Thm 3.2] (see also [4, 2.3] and our Section 4), this

leads to a Z/2-basis for Fs/Fs+1 consisting of all (vtkk v
tk+1

k+1 · · · )zI with
∑
tj = s.

We claim that if zI ∈ F0 and 0 ≤ j ≤ k − 1, then we must have

(2.2) vjzI =
∑
`≥k

v`pj,k,`zI ,

where pj,k,` = pj,k,`(x1, . . . , xk) is a symmetric polynomial of degree 2`− 2j, acting on

zI by decreasing subscripts as described in the second paragraph of the paper. That

the action is symmetric and uniform is due to the uniform nature of the relations

(2.1). That it never increases subscripts of zi is a consequence of naturality: there are

inclusions
⊗

BP∗
BP∗(RP

2ni)→
⊗k

BP∗
BP∗(BZ/2) in which the only zI in the image

are those with it ≤ nt for all t, and the vj-actions are compatible.

Note that (2.1) can be interpreted as saying that, for any i ∈ {1, . . . , k},

(2.3)
∑
j≥0

vjx
2j−1
i = 0.

Since the v`-components are independent if ` ≥ k, and (2.2) says that for j < k ≤ `

the v`-component of the vj-action is given by the (unknown) polynomial pj,k,`, we

obtain the equation
k−1∑
j=0

pj,k,`(x1, . . . , xk)x
2j−1
i = x2

`−1
i

for any i ∈ {1, . . . , k} and ` ≥ k. This is the system (1.2). It incorporates all the

information of the relations and has a unique solution as a quotient of symmetric

polynomials by Cramer’s Rule. Our argument shows that it is a polynomial, mod 2.

The vj-action formula on F0 applies also on Fs by the nature of the module.

Remark 2.4. The proof in [2] that the action of lower vj’s on
⊗k

BP∗
BP∗(BZ/2)

can be expressed in terms of those with ` ≥ k involved iterative use of the relation

(2.1). A precursor of our result here was obtained in [1], motivated by this iteration.

In Section 4, we present results of a computer implementation of this iteration, also
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showing how it fails to yield a polynomial when the exponent on the RHS is not of

the form 2` − 1.

The following lemma, which is central to the proofs of Theorems 1.3 and 1.6, may

be of interest in its own right. It involves the complete homogeneous symmetric

polynomial of degree d, denoted hd(x1, . . . , xk).

Lemma 2.5. Let fk(x1, x2) =
(x1 + x2)

k+2 − hk+2(x1, x2)

x1x2
, a polynomial of degree k.

Then, mod 2,

(2.6)

hd(x1, x2, x3) ≡ (x1+x2+x3)

(d−1∑
i=0

xi3fd−1−i(x1, x2)+fd(x1, x2)
∞∑
i=0

x−i−13 (x1+x2)
i

)
.

Since fd(x1, x2) ≡ 0 iff d+3 is a 2-power, hd(x1, x2, x3)/(x1 +x2 +x3) is a polynomial

mod 2 iff d+ 3 is a 2-power.

Proof. One easily verifies that (x1 + x2)fk(x1, x2) ≡ fk+1(x1, x2) + hk+1(x1, x2). The

RHS of (2.6) expands as

d−1∑
i=0

xi+1
3 fd−1−i(x1, x2) +

d−1∑
i=0

xi3(fd−i(x1, x2) + hd−i(x1, x2)) + fd(x1, x2)

≡ xd3 +
d−1∑
i=0

xi3hd−i(x1, x2) = hd(x1, x2, x3).

Proof of Theorem 1.3. By Theorem 1.1, there is a solution if t = 2` − 1. We assume

now that t + 1 is not a 2-power. The augmented matrix of the system in Theorem

1.3 reduces, after several steps, to
1 x1 x31 x71 x2

k−1−1
1 xt1

0 1 h2(x1, x2) h6(x1, x2) · · · h2k−1−2(x1, x2) ht−1(x1, x2)
0 0 x1 + x2 + x3 h5(x1, x2, x3) h2k−1−3(x1, x2, x3) ht−2(x1, x2, x3)

...
...

...
0 0 x1 + x2 + xk h5(x1, x2, xk) · · · h2k−1−3(x1, x2, xk) ht−2(x1, x2, xk)


By Lemma 2.5, the third row becomes

[0 0 1 q4(x1, x2, x3) · · · q2k−1−4(x1, x2, x3) | φt−3(x1, x2, x3)],
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where each q is a polynomial, but φ is an infinite series, involving many negative

exponents of x3. It is impossible that there are polynomials p0, . . . , pk−1 such that

p2 + p3q4 + · · ·+ pk−1q2k−1−4 = φk−4.

3. Explicit formulas for certain pj,k,`

In this section, we prove Theorems 1.1, 1.6, and 1.8.

Proof of Theorem 1.6. Similarly to the proof of Theorem 1.3, when k = 3, (1.2) is

equivalent to1 x1 x31
0 1 h2(x1, x2)
0 0 x1 + x2 + x3

p0,3,`p1,3,`
p2,3,`

 =

 x2
`−1

1

h2`−2(x1, x2)
h2`−3(x1, x2, x3)

 .
Thus by Lemma 2.5

p2,3,` = h2`−3(x1, x2, x3)/(x1 + x2 + x3)

=
2`−4∑
k=0

xk3

(
(x1 + x2)

2`−2−k − h2`−2−k(x1, x2)
x1x2

)
=

∑((
2`−2−k
j+1

)
+ 1
)
x2

`−4−j−k
1 xj2x

k
3.

Since
(
2`−2−k
j+1

)
≡
(
j+k+2
j+1

)
, the result for p2,3,` follows.

Now we have

p1,3,` = h2`−2(x1, x2)− h2(x1, x2)p2,3,`
=

∑
xi1x

2`−2−i
2 + (x21 + x1x2 + x22)

∑
i≥j≥k≥0

i+j+k=2`−4

(1 +
(
j+k+2
k+1

)
)mi,j,k.

If k > 0, the coefficient of mi,j,k in this is

(1 +
(
j+k+2
k+1

)
) + (1 +

(
j+k+1
k+1

)
) + (1 +

(
j+k
k+1

)
),

which equals the claimed value. If k = 0 and j > 0, there is an extra 1 from the∑
xi1x

2`−2−i
2 , and we obtain

(
j+2
1

)
+
(
j+1
1

)
+
(
j
1

)
≡ 1 + j, as desired. The coefficient of

m2`−4,0,0 is easily seen to be 0.
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Finally, we obtain p0,3,` from x2
`−1

1 + x1p1,3,` + x31p2,3,`. The coefficient of mi,j,0 in

this is (1 + j) + (1 +
(
j+2
1

)
) = 0, as desired. If k > 0, the coefficient of mi,j,k is

(1 +
(
j+k
k−1

)
+
(
j+k+1
k+1

)
) + (1 +

(
j+k+2
k+1

)
) ≡

(
j+k
k

)
, as desired.

Proof of Theorem 1.8. After multiplying the ith row by xi, we see that it suffices to

show that

(3.1)
k∑
i=1

x2
i−1

1 g2k−2i−1 = x2
k

1 ,

where gm is the sum of all monomials in x1, . . . , xk of degree m with all nonzero

exponents 2-powers. (Other rows are handled equivalently.)

The term x2
k

1 is obtained once, when i = k. The only monomials obtained in the

LHS of (3.1) have their xi-exponent a 2-power for i > 1, while their x1-exponent

may be a 2-power or the sum of two distinct 2-powers. A term of the first type,

x2
i

1 x
2t2
2 · · ·x2

tk

k with
∑

2ti > 0, can be obtained from either the ith term in (3.1) or

the (i+1)st. So its coefficient is 0 mod 2. A term of the second type, x2
a+2b

1 xt22 · · ·x
tk
k ,

can also be obtained in two ways, either from i = a+ 1 or i = b+ 1.

Proof of Theorem 1.10. If i1, . . . , ik are distinct nonnegative integers, let V (i1, . . . , ik)

denote the determinant, mod 2, of the Vandermonde matrixx
i1
1 · · · xik1

...

xi1k · · · xikk

 .
Note that this equals the mod 2 polynomial mi1,...,ik . By Cramer’s Rule applied to

(1.2)

p0,k,` =
V (2, 4, 8, . . . , 2k−1, 2`)

V (1, 2, 4, . . . , 2k−1)
.

The theorem then is a consequence of the following lemma.

Lemma 3.2. For ` ≥ k, the only k-tuples (n1, . . . , nk) that can be decomposed in an

odd number of ways as ni = si+ ti with (t1, . . . , tk) a permutation of (1, 2, 4, . . . , 2k−1)

and si = |Si|, where S1, . . . , Sk is a partition of {1, 2, 4, . . . , 2`−1} into k nonempty

subsets, are the permutations of (2, 4, 8, . . . , 2k−1, 2`).
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Proof. We will show that all

(3.3)

(
s1 · · · sk
t1 · · · tk

)
as in the lemma can be grouped into pairs with equal column sums (s1+t1, . . . , sk+tk)

except for permutations (by column) of

(3.4)

(
20 21 · · · 2k−2 2k−1 + · · ·+ 2`−1

20 21 · · · 2k−2 2k−1

)
.

It is easy to see that (3.4) is the only matrix (3.3) with its column sum. To see how

all other matrices occur in pairs, we first consider those of a special type. For the

remainder of the proof, we let e = k − 1, because of the many occurrences of k − 1.

We say that (3.3) is of Type 1 if, for some i, ti = 2j with j < e and si = 2j + D

with D the sum of a nonempty set of 2-powers which does not include 2j. Choose

the smallest such j. Then(
· · · 2j +D · · · y · · ·
· · · 2j · · · 2j+1 · · ·

)
is paired with

(
· · · D · · · 2j + y · · ·
· · · 2j+1 · · · 2j · · ·

)
.

Here the first indicated column in each is column i, while the second indicated column

for each is the one in which 2j+1 occurs on the bottom row of the first matrix. It is

possible that the second indicated column might actually appear to the left of the

first one. Other columns are unchanged. Both D and y are nonzero sums of one or

more distinct 2-powers not including 2j. Clearly this method divides into pairs with

equal column sums all Type 1 matrices (3.3).

For those (3.3) not of Type 1, we create paths in the matrix (3.3) as follows. We

think of entries in the top row as the set of 2-powers comprising its sum. If a top

row entry is (the sum of) a set of 2j’s with all j > e, we call the smallest such

2j “unaccompanied,” meaning that it is not accompanied by 2-powers of the type

which appear on the bottom row. Connect unaccompanied 2-powers to the entry

below them. Expand these to the smallest set of paths such that each 2-power in

the bottom row for which there are no unconnected 2-powers ≤ 2e directly above it

is connected to its equal in the top row and to the group of 2-powers ≤ 2e directly

above it (or to an unaccompanied 2-power > 2e).

Here are two examples. In each case, e is the largest exponent in the bottom row.
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Figure 3.5. Flippable example

24 20 21 22 23

24, 20 26 25 21, 23 22

Figure 3.6. Example for reversing 2e and 2e+1

20 21 23 22 24 25

26 20 21, 22 27 23 24, 25

In Figure 3.6, the bottom 23 is considered to be connected to either 21 or 22 above it.

We begin by illustrating for these two examples the matrix with which they are

paired. For Figure 3.5, we can flip vertically the unconnected elements to yield a

distinct matrix with the same column sums, as in Figure 3.7.

Figure 3.7. Paired with Figure 3.5

24 20 21 23 22

24, 20 26 25 21, 22 23

Note that if Figure 3.7 were the one being considered, it would lead to Figure 3.5.

For Figure 3.6, only
(
2e

2e

)
is unconnected. We follow the path from its accompanying

24 until we get to 2e+1, and flip (i.e. move them directly up or down) all the elements

≤ 2e along the path, and horizontally reverse the
(
2e

2e

)
and

(
2e+1

−

)
, obtaining Figure

3.8.

Figure 3.8. Paired with Figure 3.6.

25 20 21 22 23 24

25, 20 21 22, 23 27 24 26

Note that as we follow the path from the 24 in the top row of Figure 3.6, when we

get to the 21, 22 pair, we choose to follow the path through 21, so as to get to 2e+1

eventually.

Now we consider in general a matrix which is not of Type 1. The end of a path

can only be (ignoring 2j’s on top with j > e) of one of the two following types.
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Figure 3.9. One type of path ending

2c 2b

2a, 2b

Here a, b, and c are distinct 2-powers ≤ 2e, with possibly more than one 2a.

Figure 3.10. The other type of path ending

2e 2b

2e, 2b

If there is a path which ends as in Figure 3.9, we can flip all unconnected 2j’s

with j ≤ e. Because all connected 2j’s with j ≤ e are connected (diagonally) top-to-

bottom, the unconnected 2j’s with j ≤ e on top will necessarily be a permutation of

those on the bottom, and hence the flipping will not affect the fact that the entries

in each row are a permutation of the appropriate set of 2-powers, and it will preserve

column sums since flipping is done vertically. Moreover the process is reversible. This

case was illustrated in Figures 3.5 and 3.7.

Now we consider the case in which there is no path ending as in Figure 3.9. Then

all paths end at the terminus of Figure 3.10. This is exemplified in Figure 3.6, where

paths starting at 26 and 27 both pass through the same position and end up at the

same place. If 2e+1 is unaccompanied, then vertically flip all the 2j’s in the path from

it to the Figure 3.10 terminus, and reverse horizontally the
(
2e

2e

)
and

(
2e+1

−

)
, as was

done in going from Figure 3.6 to 3.8. This will preserve column sums and maintain

the permutation property of both rows.

It can happen that 2e+1 is accompanied in the middle of a path which ends as in

Figure 3.10. An example is:

20 21 22 23 24

26 20 21, 25 22 23, 24
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In this case we flip the 2j’s with j < 2e which occur in the portion of the path between(
2e+1

−

)
and

(
2e

2e

)
, and horizontally reverse the

(
2e+1

−

)
and

(
2e

2e

)
. In this example, it would

yield

20 21 24 22 23

26 20 21, 24, 22 23 25

Finally, we consider the case in which 2e+1 is accompanied but is not in the middle

of a path. Its column cannot contain
(
2j

2j

)
with j < e, since Type 1 has been ruled

out. If its column contains unconnected
(
2a

2b

)
with a 6= b and both ≤ 2e, then this will

be part of something flippable, since 2a and 2b will have to appear elsewhere, also not

in a path. It remains to consider the possibility that the column with 2e+1 on top

also contains
(
2e

2e

)
.

If it is of the form

2e 2a

2e+1, 2e, 2a

then there must be a 2e+2 elsewhere in the top row (or 2e+2 also accompanying 2e+1

and 2e+3 elsewhere, etc.). Deal with the
(
2e+2

−

)
and

(
2e+1,2e

2e

)
just as we did with

(
2e+1

−

)
and

(
2e

2e

)
earlier.

It cannot happen that
(
2e+1,2e

2e

)
is accompanied on top by an unconnected 2a with

a < e. This would imply an unconnected 2a elsewhere on the bottom, then an

unconnected 2b above it, etc. However, there must also be an unaccompanied 2e+δ on

top somewhere with δ ≥ 2, which will lead to a contradiction with the unconnected

elements already accounted for.

Finally, there is the possibility that the
(
2e+1,2e

2e

)
column has nothing else on top

except perhaps for some 2e+δ with δ ≥ 2. The other columns must have some uncon-

nected flippable parts unless they are all
(
2a

2a

)
. If there are any 2e+δ’s with δ ≥ 2, they

cannot accompany
(
2a

2a

)
with a < e because Type 1 has been ruled out. This leaves as

the only possible unpaired matrix the one given in (3.4) or its permutations. (Recall

e = k − 1.)
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4. Computer verification

In this section, we describe dramatic computer verifications of how the polynomials

of Theorem 1.6 are obtained by iterating relations (2.1), while if the exponent of the

analogue of x2
`−1 is changed to a number not of that form, the iteration doesn’t lead

to a polynomial.

In [2], [5], and [1], (2.3) was used to replace v0x1 or v1x
1
2 or v2x

3
3 by the other

terms in the series. This is how they were reduced to elements in (v3, v4, . . .)Q. We

can implement the replacements simultaneously and iterate in Maple and obtain a

reduction of an element vjz(i1,i2,i3), j ∈ {0, 1, 2}, to

v3
∑

z(i1−e1,i2−e2,i3−e3) + v4
∑

z(i1−e1,i2−e2,i3−e3),

where the sums are taken over certain triples (e1, e2, e3) summing to 7−(2j−1) (resp.

15− (2j−1)). Alternatively we can see what happens if we try a similar algorithm to

reduce it to w
∑

z(i1−e1,i2−e2,i3−e3) with
∑
ei = 6− (2j − 1). This would correspond

to solving (1.2) with k = 3 and exponents 6 on the RHS.

For the first, let fj be a polynomial in z1, z2, and z3 with exponent of zi corre-

sponding to the subscript in the ith component of zI . The 5-tuple (f0, f1, f2, f3, f4)

will represent the coefficients of v0, . . . , v4. The quantity (2j − 1) + deg(fj) will be

constant in a vector and throughout the reduction.

At each step, replace (f0, . . . , f4) by

(z2f1 + z33f2, z
−1
1 f0 + z23f2, z

−3
1 f0 + z−22 f1,

z−71 f0 + z−62 f1 + z−43 f2 + f3, z
−15
1 f0 + z−142 f1 + z−123 f2 + f4),

with the convention that a term with negative exponent of any zi is 0. Note that z−1i
here corresponds to xi in the first two sections. For example, (0, f1, 0, 0, 0) is replaced

by (z2f1, 0, z
−2
2 f1, z

−6
2 f1, z

−14
2 f1), corresponding to the relation v1 = x−12 v0 + x22v2 +

x62v3 + x142 v4.

If we start with (0, 0, z161 z
16
2 z

16
3 , 0, 0), during the first 66 iterations there are nonzero

entries in at least one of the first three components, but it stabilizes at the 67th

iteration to

(4.1)
∑

(0, 0, 0, z16−a11 z16−a22 z16−a33 , z16−b11 z16−b22 z16−b33 ),
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where (a1, a2, a3) ranges over all permutations of (4, 0, 0), (2, 2, 0), and (2, 1, 1), while

(b1, b2, b3) ranges over all permutations of (12, 0, 0), (10, 2, 0), (8, 4, 0), (6, 6, 0), (10, 1, 1),

(9, 2, 1), (6, 5, 1), (8, 2, 2), (6, 4, 2), (5, 5, 2), (6, 3, 3), (5, 4, 3), and (4, 4, 4). This is

consistent with p2,3,3 and p2,3,4 in Theorem 1.6, with xi corresponding to z−1i . These

(b1, b2, b3) are those with
(
b2+b3+2
b3+1

)
≡ 0 mod 2.

If we start with a larger monomial in the third component, a similar result is

obtained; it just takes a few more iterations. If we start instead with a monomial

in the first or second component, the result is similar. The (a1, a2, a3) and (b1, b2, b3)

will correspond to the odd binomial coefficients in p0,3,` or p1,3,` in Theorem 1.6.

Alternatively, omit f4, and let f3 correspond to exponent 6 on the RHS of (1.2),

rather than 7 or 15. So now (f0, f1, f2, f3) is replaced by

(z2f1 + z33f2, z
−1
1 f0 + z23f2, z

−3
1 f0 + z−22 f1, z

−6
1 f0 + z−52 f1 + z−33 f2 + f3).

For any initial monomial, the iteration will stabilize to some (0, 0, 0, q(z1, z2, z3)) after

sufficiently many steps. But the stable vector will involve many terms with exponent

of z3 greater than that of the initial monomial (which our naturality argument pre-

cluded when the exponent on the RHS of (1.2) was 2` − 1), and, as the exponents

of the initial vector are increased, the stable vector becomes longer. This yields that

the solution of (1.2) when k = 3 and the exponent on the RHS is 6 begins as follows,

with mi,j denoting the monomial symmetric polynomial in x1 and x2.

p0 = m2,1x
3
3 +m4,1x3 + (m5,1 +m3,3) + (m6,1 +m5,2 +m4,3)x

−1
3 +m7,1x

−2
3

+(m8,1 +m7,2)x
−3
3 + · · ·

p1 = (m2,0 +m1,1)x
3
3 + (m4,0 +m2,2)x3 + (m5,0 +m3,2) + (m6,0 +m5,1 +m3,3)x

−1
3

+(m7,0 +m5,2 +m4,3)x
−2
3 + (m8,0 +m7,1 +m6,2)x

−3
3 + · · ·

p2 = x33 + (m2,0 +m1,1)x3 +m2,1 + (m4,0 +m2,2)x
−1
3 + (m5,0 +m4,1 +m3,2)x

−2
3

+m6,0x
−3
3 + · · · .

The p2 here gives the first few terms of the second factor on the RHS of (2.6) with

d = 4.
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