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The cohomology of the connective spectra
for K-theory revisited
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ABSTRACT. The stable mod 2 cohomologies of the spectra for connec-
tive real and complex K-theories are well known and easy to work with.
However, the known bases are in terms of the anti-automorphism of Mil-
nor basis elements. We offer simple bases in terms of admissible se-
quences of Steenrod operations that come from the Adem relations. In
particular, a basis for 𝐻∗(𝑏𝑢) is given by those 𝑆𝑞𝐼 with 𝐼 admissible and
no 𝑆𝑞1 or 𝑆𝑞2𝑛+1 appearing for 𝑛 > 0.
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1. Introduction

Our goal is to give simple bases for the mod 2 cohomologies, 𝐻∗(𝑏𝑜) and
𝐻∗(𝑏𝑢), for the connective real and complex K-theory spectra respectively.

Let 𝐼 = (𝑖1, 𝑖2,… , 𝑖𝑘). We let 𝑆𝑞𝐼 = 𝑆𝑞𝑖1𝑆𝑞𝑖2 ⋯ 𝑆𝑞𝑖𝑘 be a composition of
Steenrod squares. We have the length of 𝐼, given by 𝓁(𝐼) = 𝑘, and the
degree of 𝐼, given by |𝐼| = |𝑆𝑞𝐼| =

∑
𝑖𝑠. We say 𝐼 is admissible if 𝑖𝑠 ≥ 2𝑖𝑠+1

for all 𝑠. For 𝐼 admissible, we have the excess, 𝑒(𝐼) = 𝑖1 − 𝑖2 −⋯ − 𝑖𝑘. The
admissible 𝑆𝑞𝐼 form the Serre-Cartan basis for the mod 2 Steenrod algebra,
𝒜 ([Ser53, Car55]). Let 𝒜1 be the sub-algebra generated by 𝑆𝑞1 and 𝑆𝑞2. Let
𝐸1 be the sub-algebra generated by 𝑄0 = 𝑆𝑞1 and 𝑄1 = 𝑆𝑞1𝑆𝑞2 + 𝑆𝑞2𝑆𝑞1.
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Let 𝐙2 be the integers mod 2. It has been known for a long time ([Sto63])
that𝐻∗(𝑏𝑜) = 𝒜⊗𝒜1

𝐙2 = 𝒜∕∕𝒜1 and𝐻∗(𝑏𝑢) = 𝒜⊗𝐸1𝐙2 = 𝒜∕∕𝐸1. The usual
basis for 𝐻∗(𝑏𝑜) involves applying the anti-automorphism to Milnor basis
([Mil58]) elements 𝑆𝑞(𝑅) with 𝑅 = (4𝑟1, 2𝑟2, 𝑟3,…). One can also extract an
exotic basis for 𝐻∗(𝑏𝑜) from [Mor07] that is probably related to the spaces
in the Omega spectrum that the elements are created on.

We can now state our main theorem:

Theorem 1.1. A basis for 𝐻∗(𝑏𝑜) is given by all 𝑆𝑞𝐼 with 𝐼 admissible, no 𝑖𝑠 =
2𝑛 + 1 for 𝑛 ≥ 1 and 𝑖𝑘 ≥ 4. The case 𝐻∗(𝑏𝑢) is the same except that 𝑖𝑘 ≥ 2.

Along the way we needed some things about the Steenrod algebra that
may be of independent interest.

Definition 1.2. Let 𝑇𝑏 ⊂ 𝒜 be the span of all admissible 𝑆𝑞𝐼 with 𝑖1 ≤ 𝑏.

Proposition 1.3. 𝑆𝑞𝑎 𝑇𝑏 ⊂ 𝑇𝑛 where

𝑛 =
⎧

⎨
⎩

𝑎 if 𝑎 ≥ 2𝑏
2𝑏 − 1 if 2𝑏 > 𝑎 ≥ 𝑏
𝑎 + 𝑏 if 𝑏 > 𝑎 > 0.

Remark 1.4. Note that it is always true that 𝑆𝑞𝑎𝑇𝑏 ⊂ 𝑇𝑎+𝑏. The way we
eliminate the 𝑆𝑞2𝑛+1 is as follows. We consider 𝐽 = (2𝑛+1 + 1, 𝑖0,… , 𝑖𝑘) ad-
missible. If 𝑆𝑞𝐽 is non-zero in 𝒜∕∕𝒜1, we can write it as a sum of 𝑆𝑞𝐾 with
𝐾 admissible and 𝑘1 ≤ 2𝑛+1. Although we don’t need it in this paper, we
also show that 𝑒(𝐽) > 𝑒(𝐾) for every such 𝐾.

The subalgebra 𝒜𝑛 of 𝒜 is generated by 𝑆𝑞1, 𝑆𝑞2, 𝑆𝑞4,⋯ , 𝑆𝑞2𝑛 . As usual,
let 𝛼(𝑛) be the number of ones in the binary expansion of 𝑛. We had a
brief hope that a basis for 𝒜∕∕𝒜𝑛 would be given by 𝑆𝑞𝐼 with 𝐼 admissible,
𝑖𝑘 ≥ 2𝑛+1 and with no 𝑖𝑠 with 𝛼(𝑖𝑠 − 1) ≤ 𝑛. Unfortunately it was false
already in degree 49 for 𝒜2. The anti-automorphism of the Milnor element
𝑆𝑞(8, 4, 2, 1) is non-zero in degree 49. However, a short calculation shows
that the suggested conjecture has no elements in degree 49.

One observation survived:

Proposition 1.5. In 𝒜∕∕𝒜𝑛, if 𝛼(𝑚) ≤ 𝑛, then 𝑆𝑞𝑚+1 ∈ 𝑇𝑚.

Our initial interest was in 𝑡𝑚𝑓 with 𝐻∗(𝑡𝑚𝑓) = 𝒜∕∕𝒜2. However, it was
clear that not only was nothing known here, but the same held true for
𝐻∗(𝑏𝑜). Calculations led to the conjecture and eventually the theorem. A
conjecture for 𝒜∕∕𝒜2 still eludes us.

We first prove the results about the Steenrod algebra. Then we apply
these results to prove Theorem 1.1.

2. Results on the Steenrod algebra

We will make constant use of the Thom spectrum, 𝑀𝑂, for the unori-
ented cobordism case. From [Thom54] we know that 𝐻∗(𝑀𝑂) is free over
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𝒜 and that one copy of 𝒜 sits on the Thom class 𝑈 ∈ 𝐻0(𝑀𝑂). We need the
Stiefel-Whitney (S-W) classes, 𝑤𝑖 ∈ 𝐻𝑖(𝐵𝑂), and the Thom isomorphism
𝐻∗(𝐵𝑂) ≅ 𝐻∗(𝑀𝑂) that takes 𝑤𝑖 to 𝑈𝑤𝑖. We need the connection between
the S-W classes and the Steenrod algebra ([Wu53]) given by 𝑆𝑞𝑛𝑈 = 𝑈𝑤𝑛
and

𝑆𝑞𝑖(𝑤𝑗) =
∑𝑖

𝑡=0

(𝑗 + 𝑡 − 𝑖 − 1
𝑡

)
𝑤𝑖−𝑡𝑤𝑗+𝑡.

Keep in mind that 𝑆𝑞𝑛𝑤𝑛 = 𝑤2
𝑛 and 𝑆𝑞𝑖𝑤𝑛 = 0 when 𝑖 > 𝑛.

The cohomology, 𝐻∗(𝐵𝑂), is a polynomial algebra on the S-W classes,
[MS74]. We put an order on the monomials. We have 𝑀 < 𝑀′ if the degree
of 𝑀′ is greater than that of 𝑀. Next, if they have the same degree, the
one with the largest 𝑤𝑛 is greater. If they have the same largest 𝑤𝑛, we
go to the next largest and so on. To use Thom’s examples from his paper:
𝑤4 < 𝑤4𝑤2

1 < 𝑤4𝑤2𝑤1 < 𝑤4𝑤3.

Lemma 2.1 (Thom, in the proof of II.8, [Thom54]). For 𝐼 = (𝑖1, 𝑖2,… , 𝑖𝑘) ad-
missible, in 𝐻∗(𝑀𝑂),

𝑆𝑞𝐼(𝑈) = 𝑈(𝑤𝑖1𝑤𝑖2 ⋯𝑤𝑖𝑘 + ∆)
where ∆ is a sum of monomials of lower order.

Remark 2.2. The filtration is not a filtration of 𝒜-modules, but Thom’s re-
sult allows us to distinguish between admissible 𝑆𝑞𝐼 using the S-W classes
in the Thom spectrum. Because it was 1954, Thom worked in the stable
range of 𝑀𝑂(𝑛) where his Thom class was 𝑤𝑛.

Proof of Proposition 1.3. It is enough to consider the case when 𝑖1 = 𝑏.
When 𝑎 ≥ 2𝑏, there is nothing to prove because 𝑆𝑞𝑎𝑆𝑞𝐼 is already admis-
sible. When 2𝑏 > 𝑎 ≥ 𝑏, this is no longer the case. If 𝑆𝑞𝑎𝑆𝑞𝐼 is written in
terms of admissible 𝑆𝑞𝐽 , we need to determine what the maximum possi-
bility is for 𝑗1. We look at

𝑆𝑞𝑎𝑆𝑞𝐼(𝑈) = 𝑆𝑞𝑎
(
𝑈(𝑤𝑏𝑤𝑖2 ⋯𝑤𝑖𝑘 + ∆)

)

=
𝑎∑

𝑗=0
𝑆𝑞𝑎−𝑗(𝑈)𝑆𝑞𝑗(𝑤𝑏𝑤𝑖2 ⋯𝑤𝑖𝑘 + ∆)

=
𝑎∑

𝑗=0
𝑈𝑤𝑎−𝑗𝑆𝑞𝑗(𝑤𝑏𝑤𝑖2 ⋯𝑤𝑖𝑘 + ∆).

Since 𝑎−𝑗 < 2𝑏, the largest possible new S-W class is given by 𝑆𝑞𝑗(𝑤𝑏), but
the largest this can be is 𝑆𝑞𝑏−1(𝑤𝑏) = 𝑤2𝑏−1 plus other terms with products.
Similarly, if 𝑎 = 2𝑏 − 1, we could get 𝑤2𝑏−1 when 𝑗 = 0 in the formula. Not
only is 𝑛 = 2𝑏 − 1 the largest possible, but it is realized.

Using the same formula when 𝑏 > 𝑎 > 0, the largest possible 𝑤𝑛 is when
𝑆𝑞𝑎𝑤𝑏 includes 𝑤𝑎+𝑏 and that is only realized when

(𝑏−1
𝑎

)
= 1 (mod 2). This

concludes the proof. □
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It is time to introduce one of our key tools, the Adem relations ([Ade52]):

𝑆𝑞𝑎𝑆𝑞𝑏 =
[𝑎∕2]∑

𝑖

(𝑏 − 1 − 𝑖
𝑎 − 2𝑖

)
𝑆𝑞𝑎+𝑏−𝑖𝑆𝑞𝑖.

These apply when 𝑎 < 2𝑏, that is, when 𝑆𝑞𝑎𝑆𝑞𝑏 is not admissible. The
resulting terms are admissible. The sum is from the maximum of 0 or 𝑎 −
𝑏 + 1.

Proof of Proposition 1.5. We induct on 𝑚. Let 𝑚 = 2𝑘1 + ⋯ + 2𝑘𝓁 with
𝑘1 >⋯ > 𝑘𝓁 and 𝓁 ≤ 𝑛. Let 𝑠 = min{𝑖 ∶ 𝑘𝑖 > 𝑘𝑖+1 +1}. If no such 𝑠, let 𝑠 = 𝓁.
If 𝑠 = 𝓁 and 𝑘𝓁 = 0, then 𝑚 + 1 = 2𝓁, and we are done since 𝑆𝑞2𝓁 = 0 in
𝒜∕∕𝒜𝑛. Otherwise, write 𝑚 = 2𝑎 + 𝑏 with

𝑎 = 2𝑘1−1 +⋯ + 2𝑘𝑠−1 and 𝑏 = 2𝑘𝑠+1 +⋯ + 2𝑘𝓁 .

Note that if 𝑠 = 𝓁, then 𝑏 = 0 and 𝑚 is even, having already done the
odd case. Then 𝑆𝑞𝑎+𝑏+1 ∈ 𝑇𝑎+𝑏 by the induction hypothesis. Proposition
1.3 says 𝑆𝑞𝑎𝑇𝑎+𝑏 ⊂ 𝑇2𝑎+𝑏, so we have 𝑆𝑞𝑎𝑆𝑞𝑎+𝑏+1 ∈ 𝑇2𝑎+𝑏. Since

(𝑎+𝑏
𝑎

)
= 1,

(This is because the binary expansion of 𝑎+𝑏 includes the binary expansion
of 𝑎 in this case. We are always working mod 2), the Adem relation gives

𝑆𝑞𝑎𝑆𝑞𝑎+𝑏+1 =
∑(𝑎 + 𝑏 − 𝑖

𝑎 − 2𝑖

)
𝑆𝑞2𝑎+𝑏+1−𝑖𝑆𝑞𝑖 = 𝑆𝑞2𝑎+𝑏+1 + ∆.

Here ∆ ∈ 𝑇2𝑎+𝑏 and so is the left hand side, so 𝑆𝑞𝑚+1 = 𝑆𝑞2𝑎+𝑏+1 ∈ 𝑇2𝑎+𝑏 =
𝑇𝑚. □

We now consider the obvious homomorphism from the span of admis-
sible monomials described in Theorem 1.1 into 𝒜∕∕𝒜1. In Section 5, we do
the deduction for 𝒜∕∕𝐸1.

3. Injectivity

We wish to show that the 𝑆𝑞𝐼 of Theorem 1.1 are linearly independent.
This follows directly from Lemma 2.1 once the background is set up. For
that we need the polynomial algebra from [Thomas62]

𝐻∗(𝐵𝑆𝑝𝑖𝑛) = 𝑃[𝑤𝑖] 𝑖 ≥ 4 𝑖 ≠ 2𝑛 + 1.

We give a quick proof of this because it involves techniques we need any-
way.

Mod decomposables, we have the following easily verified formulas:

𝑆𝑞2𝑘 (𝑤2𝑘+1) ≡ 𝑤2𝑘+1+1 𝑆𝑞(2𝑛 ,2𝑛−1,…,4,2,1)(𝑤2) ≡ 𝑤2𝑛+1+1.

The second follows immediately from the first. Because𝑤2 = 0 ∈ 𝐻∗(𝐵𝑆𝑝𝑖𝑛)
by definition, any Steenrod operations on it are zero as well. The formula
tells us that 𝑤2𝑛+1+1 is decomposable in 𝐻∗(𝐵𝑆𝑝𝑖𝑛). Most are non-trivial,
but we do have 𝑤3 = 𝑤5 = 𝑤9 = 0.



THE COHOMOLOGY OF THE CONNECTIVE SPECTRA FOR K-THEORY 517

We know 𝐻∗(𝐵𝑆𝑂) = 𝑃[𝑤𝑖] with 𝑖 > 1. We have a fibration 𝐵𝑆𝑝𝑖𝑛 →
𝐵𝑆𝑂 → 𝐾2 = 𝐾(𝐙2, 2), where the last map is given by 𝑤2. Note that 𝐻∗(𝐾2)
is a polynomial algebra on the 𝑆𝑞(2𝑛 ,2𝑛−1,…,4,2,1)(𝜄2). The above computation
shows the map 𝐻∗(𝐾2) ⟶ 𝐻∗(𝐵𝑆𝑂) is an injection giving us a short ex-
act sequence of Hopf algebras 𝐻∗(𝐾2) ⟶ 𝐻∗(𝐵𝑆𝑂) ⟶ 𝐻∗(𝐵𝑆𝑝𝑖𝑛) from
the Eilenberg-Moore (or Serre) spectral sequence. The collapse of the EM-
s.s. is because we are working with Hopf algebras so the injection makes
𝐻∗(𝐵𝑆𝑂) free over 𝐻∗(𝐾2). This gives 𝐻∗(𝐵𝑆𝑝𝑖𝑛) and the decomposability
of the 𝑤2𝑛+1.

We are also going to look at the Thom spectrum, 𝑀𝑆𝑝𝑖𝑛. Let 𝑈 be the
Thom class in𝐻0(𝑀𝑆𝑝𝑖𝑛). The reason we are looking at the Thom spectrum
is because as a module over the Steenrod algebra, 𝐻∗(𝑀𝑆𝑝𝑖𝑛) is a sum of
cyclic modules and the module generated by𝑈 is precisely𝒜∕∕𝒜1, [ABP67].

Proof of injectivity for Theorem 1.1. If there were a relation in 𝒜∕∕𝒜1
among the admissible 𝑆𝑞𝐼 with no 𝑖𝑠 = 2𝑛 + 1 and 𝑖𝑘 ≥ 4, Lemma 2.1 would
imply a similar relations among the S-W classes in𝐻∗(𝑀𝑆𝑝𝑖𝑛). But because
we are not using the 𝑤2𝑛+1, these are linearly independent. □

4. Surjectivity

All that is left to do with our Theorem 1.1 is to show that any admissible
𝑆𝑞𝐼 with some 𝑖𝑠 = 2𝑛 + 1 can be written in terms of admissible 𝑆𝑞𝐽 with no
𝑖𝑠 = 2𝑡 + 1.

We specialize Proposition 1.3 to 𝑆𝑞2𝑛+𝑗𝑇2𝑛 ⊂ 𝑇2𝑛+1 when 2𝑛 > 𝑗 ≥ 0.
Proposition 1.3 actually tells us 𝑇2𝑛+1−1 but we don’t need that little extra
bit.

Lemma 4.1. In 𝒜∕∕𝒜1, if 𝐽 = (2𝑛+1+1, 𝑖0,… , 𝑖𝑘) is admissible, then 𝑆𝑞𝐽 ∈ 𝑇2𝑛+1 ,
that is, 𝑇2𝑛+1+1 ⊂ 𝑇2𝑛+1 .

Proof of Theorem 1.1 for 𝐻∗(𝑏𝑜) from Lemma 4.1. If we have an 𝐼 admis-
sible with some 𝑖𝑠 = 2𝑛 + 1 with 𝑛 ≥ 1, we want to show that 𝑆𝑞𝐼 can be
replaced without this 𝑖𝑠 = 2𝑛 +1. Write 𝐼 = 𝐿𝐽 where 𝐽 is the shortest possi-
ble as in Lemma 4.1. Lemma 4.1 tells us that 𝑆𝑞𝐽 can be written in terms of
𝑆𝑞𝐾 admissible with 𝑘1 < 2𝑛+1 + 1. When this sum replaces 𝑆𝑞𝐽 in 𝑆𝑞𝐼 , 𝐿𝐾
is still admissible. By induction, we do not have to worry about smaller 𝐽
like this showing up. Since 𝐼 is finite, this process of replacement is also fi-
nite. We have shown that every 𝑆𝑞𝐼 , 𝐼 admissible, can be replaced with one
of the desired form, and we have shown that the 𝑆𝑞𝐼 of this form are lin-
early independent. This concludes the proof of Theorem 1.1 from Lemma
4.1. □

Proof of Lemma 4.1. When 𝐽 = (2𝑛+1 + 1), we can use the 𝒜∕∕𝒜1 case of
Proposition 1.5.

To start our induction on 𝑘, we need the 𝐽 = (2𝑛+1 + 1, 𝑖0) case. We begin
with 𝑆𝑞2𝑛+1 = ∆ ∈ 𝑇2𝑛 from Proposition 1.5 and apply 𝑆𝑞2𝑛+𝑖0 . For 𝐽 to be
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admissible, we have 𝑖0 ≤ 2𝑛. From Proposition 1.3, 𝑆𝑞2𝑛+𝑖0𝑇2𝑛 ⊂ 𝑇2𝑛+1 so
𝑆𝑞2𝑛+𝑖0𝑆𝑞2𝑛+1 ∈ 𝑇2𝑛+1 since 𝑆𝑞2𝑛+𝑖0∆ ∈ 𝑇2𝑛+1 . All we need now is:

𝑆𝑞2𝑛+𝑖0𝑆𝑞2𝑛+1 =
∑

𝑠≥𝑖0

( 2𝑛 − 𝑠
2𝑛 + 𝑖0 − 2𝑠

)
𝑆𝑞2𝑛+1+1+𝑖0−𝑠𝑆𝑞𝑠

= 𝑆𝑞2𝑛+1+1𝑆𝑞𝑖0 +
∑

𝑠>𝑖0

( 2𝑛 − 𝑠
2𝑛 + 𝑖0 − 2𝑠

)
𝑆𝑞2𝑛+1+1+𝑖0−𝑠𝑆𝑞𝑠.

The terms in the sum are all also in 𝑇2𝑛+1 so the same is true for 𝑆𝑞2𝑛+1+1𝑆𝑞𝑖0 .
The following induction proves our Lemma 4.1 because the two terms in

𝑇2𝑛+1 force the third term to be there as well. The induction is started above
as it can be rephrased in the format of our induction below as the 𝑘 = 0
case.

Induction 4.2. In 𝒜∕∕𝒜1, with (2𝑛+1 + 1, 𝑖0,… , 𝑖𝑘) admissible,

𝑆𝑞2𝑛+𝑖0𝑆𝑞2𝑛−1+𝑖1 ⋯ 𝑆𝑞2𝑛−𝑘+𝑖𝑘𝑆𝑞2𝑛−𝑘+1 ∈ 𝑇2𝑛+1

and is equal in 𝒜∕∕𝒜1 to

𝑆𝑞2𝑛+1+1𝑆𝑞𝑖0𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘 + ∆𝑛+1 with ∆𝑛+1 ∈ 𝑇2𝑛+1 .

Proof of our Induction 4.2. By induction on 𝑘, we can write

𝑆𝑞2𝑛−1+𝑖1 ⋯ 𝑆𝑞2𝑛−𝑘+𝑖𝑘𝑆𝑞2𝑛−𝑘+1 ∈ 𝑇2𝑛

and it is equal to

𝑆𝑞2𝑛+1𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘 + ∆𝑛 with ∆𝑛 ∈ 𝑇2𝑛 .

Now we take 𝑆𝑞2𝑛+𝑖0 times everything. Since 𝑆𝑞2𝑛+𝑖0𝑇2𝑛 ⊂ 𝑇2𝑛+1 , we have
𝑆𝑞2𝑛+𝑖0∆𝑛 = ∆𝑛+1 ∈ 𝑇2𝑛+1 and

𝑆𝑞2𝑛+𝑖0𝑆𝑞2𝑛−1+𝑖1 ⋯ 𝑆𝑞2𝑛−𝑘+𝑖𝑘𝑆𝑞2𝑛−𝑘+1 ∈ 𝑇2𝑛+1

and is equal in 𝒜∕∕𝒜1 to

𝑆𝑞2𝑛+𝑖0𝑆𝑞2𝑛+1𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘 + ∆𝑛+1.

So, the term
𝑆𝑞2𝑛+𝑖0𝑆𝑞2𝑛+1𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘

is also in 𝑇2𝑛+1 . It is equal to

=
( ∑

𝑠≥𝑖0

( 2𝑛 − 𝑠
2𝑛 + 𝑖0 − 2𝑠

)
𝑆𝑞2𝑛+1+1+𝑖0−𝑠𝑆𝑞𝑠

)
𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘

= 𝑆𝑞2𝑛+1+1𝑆𝑞𝑖0𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘

+
( ∑

𝑠>𝑖0

( 2𝑛 − 𝑠
2𝑛 + 𝑖0 − 2𝑠

)
𝑆𝑞2𝑛+1+1+𝑖0−𝑠𝑆𝑞𝑠

)
𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘 .
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Since 𝑠 > 𝑖0, the elements in the sum are admissible and in 𝑇2𝑛+1 . They can
now be incorporated into∆𝑛+1. We are left with 𝑆𝑞𝐽 = 𝑆𝑞2𝑛+1+1𝑆𝑞𝑖0𝑆𝑞𝑖1 ⋯ 𝑆𝑞𝑖𝑘
from Lemma 4.1 which is therefore also in 𝑇2𝑛+1 . □

Lemma 4.1 follows. □

Although we don’t need this next Lemma, it is interesting in its own
right. Let 𝐸𝑟 be spanned by all 𝑆𝑞𝐼 , 𝐼 admissible, 𝑒(𝐼) ≤ 𝑟. Let 𝐾(𝐙2, 𝑟) = 𝐾𝑟
be the Eilenberg-MacLane space with 𝜄𝑟 ∈ 𝐻𝑟(𝐾𝑟) the fundamental class.
The significance of excess is that the 𝑆𝑞𝐼 𝜄𝑟 with 𝑆𝑞𝐼 ∈ 𝐸𝑟 are linearly inde-
pendent in 𝐻∗(𝐾𝑟) and 𝑆𝑞𝐼 𝜄𝑟 = 0 for 𝑒(𝐼) > 𝑟.

Lemma 4.3. In 𝒜∕∕𝒜1, if 𝐽 = (2𝑛+1 + 1, 𝑖0,… , 𝑖𝑘) is admissible, then 𝑆𝑞𝐽 ∈
𝐸𝑒(𝐽)−2.

Proof. In 𝒜∕∕𝒜1, write 𝑆𝑞𝐽 =
∑
𝑆𝑞𝐾 with 𝐾 admissible and, from Lemma

4.1, 𝑘1 ≤ 2𝑛+1. If 𝑆𝑞𝐽 = 0, there is nothing to prove. We have |𝐽| = |𝐾|. For 𝐼
admissible, recall |𝐼| = 𝑖1+⋯+𝑖𝑘 and 𝑒(𝐼) = 𝑖1− 𝑖2−⋯− 𝑖𝑘. We can connect
them with 2𝑖1 − |𝐼| = 𝑒(𝐼). Now

𝑒(𝐾) = 2𝑘1 − |𝐾| = 2𝑘1 − |𝐽| ≤ 2𝑛+2 − |𝐽| = 2(2𝑛+1 + 1) − |𝐽| − 2 = 𝑒(𝐽) − 2.

□

5. 𝑯∗(𝒃𝒖)

We give a quick derivation of 𝐻∗(𝑏𝑢) from 𝐻∗(𝑏𝑜). We have the standard
fibration

𝑏𝑜 ⟶ 𝑏𝑢⟶ Σ2𝑏𝑜.
This gives a short exact sequence of 𝒜 modules. The map from 𝐻∗(Σ2𝑏𝑜)
takes 1 to 𝑆𝑞2 and is injective so must hit all 𝑆𝑞𝐼𝑆𝑞2 with 𝑆𝑞𝐼 a basis for
𝐻∗(𝑏𝑜). The surjection 𝐻∗(𝑏𝑢) ⟶ 𝐻∗(𝑏𝑜) must hit the 𝑆𝑞𝐼 for a basis for
𝐻∗(𝑏𝑜). This is the stated answer for 𝐻∗(𝑏𝑢) in Theorem 1.1.
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