
REGULARITY OF VOLUME-MINIMIZING FLOWS ON 3-MANIFOLDSDAVID L. JOHNSON AND PENELOPE SMITHAbstra
t. In [7, 6, 8℄ the authors 
hara
terized the singular set (dis
ontinuities of the graph)of a volume-minimizing re
ti�able se
tion of a �ber bundle, showing that, ex
ept under 
ertain
ir
umstan
es, there exists a volume-minimizing re
ti�able se
tion with the singular set lying overa 
odimension-3 set in the base spa
e. In parti
ular, it was shown that for 2-sphere bundles over3-manifolds, a minimizer exists with a dis
rete set of singular points.In this arti
le, we show by analysis of the 
hara
terizing horizontal tangent 
one, or h-
one,that for a 2-sphere bundle over a 
ompa
t 3-manifold, su
h a singular point 
annot exist. As a
orollary, for any 
ompa
t 3-manifold, there is a C
1 volume-minimizing one-dimensional foliation.In addition, this same h-
one analysis is used to show that the examples, due to Sharon Pedersen[12℄, of potentially volume-minimizing re
ti�able se
tions (re
ti�able foliations) of the unit tangentbundle to S

2n+1 are not, in fa
t, volume minimizing.
1. Introdu
tionIn [4℄, Herman Glu
k and Wolfgang Ziller asked whi
h one-dimensional, transversely oriented folia-tion F (
alled a �ow) on an odd-dimensional round sphere is best-organized, in the sense that theimage of the natural se
tion ξ : M → T1(M) of the unit tangent bundle, whose value at x is theunit tangent ve
tor of the leaf of F through x 
onsistent with the orientation of F , has smallest

n-dimensional Hausdor� measure.Their work was in part an e�ort to interpret the behavior of the Hopf �bration of the three-sphere,and indeed they were able to show that the Hopf �bration did minimize the volume. Spe
i�
ally,they were able to show that there is a three-form on T1(S
3) whi
h 
alibrates the �bers of theHopf �brations on S3, thus those foliations have the least volume of all su
h �ows on the roundthree-sphere. However, in higher dimensions the Hopf �brations are not volume-minimizing, and itis likely that volume-minimizing �ows on these manifolds are singular. In her thesis [12℄, SharonPedersen illustrated a stable, singular foliation whi
h has mu
h less mass than the Hopf �brationof S5.The purpose of the present work is to show that the regularity of Glu
k and Ziller's volume-minimizing �ow on S3 is a spe
ial 
ase of a theorem that there is a regular (C1 as a foliation)volume-minimizing �ow on 
ompa
t, oriented 3-manifold. Similarly, there are volume-minimizingse
tions of the unit tangent bundle (or other (n − 1)�sphere bundles over n-dimensional mani-folds) without isolated poles. As a 
orollary result, it will follow that Pedersen's 
urrents are notvolume-minimizing among re
ti�able se
tions of T1(S2n+1).1.1. Volume of Foliations. The volume of a one-dimensional foliation F on a 
ompa
t manifold

M 
an be 
omputed in terms of the Gauss map ξ : M → T1(M) de�ned by mapping x to a unitDate: May 16, 2011.2000 Mathemati
s Subje
t Classi�
ation. 49F20, 49F22, 49F10, 58A25, 53C42, 53C65.Key words and phrases. Geometri
 measure theory, foliations, se
tions, volume, minimal submanifolds.1



2 DAVID L. JOHNSON AND PENELOPE SMITHve
tor ξ(x) tangent to F at x, whi
h 
an be 
hosen 
onsistently if F is oriented. The formula isgiven as:
V(ξ) =

∫

M

√
1 + ‖∇ξ‖2 + · · · +

∥∥∇ξ∧(n−1)
∥∥2 dVMwhere the ve
tor wedge is interpreted by

∇α ∧ ∇β(X,Y ) :=
1

2
(∇Xα ∧∇Y β −∇Y α ∧ ∇Xβ),et
., so that

(∇ξ)∧k(X1, . . . ,Xk) = ∇X1
ξ ∧ · · · ∧ ∇Xk

ξ.The sum is taken over wedges of order up to n − 1 sin
e the �ber (Sn−1) is (n − 1)-dimensional.Although this is pre
isely the n-dimensional Hausdor� measure of the image, whi
h is the massof the re
ti�able 
urrent representing the Gauss map as a 
urrent in T1(M), this des
ription has
ertain advantages.This de�nition 
an be extended to se
tions σ of any smooth �ber-bundle B →M with 
ompa
t �ber
F , as de�ned in [7, 6℄. The volume fun
tional is essentially the same, ex
ept that the highest-degreeterm in the square root is the minimum of the dimension of M or that of the �ber,

V(σ) =

∫

M

√
1 + ‖∇σ‖2 + · · ·+ ‖∇σ∧n‖2 dVM ,with terms ∥∥∇σi

∥∥2 being 0 for i > dim(F ). The results of this arti
le will apply equally to any
Sn−1-bundle over a 
ompa
t, oriented n-manifold M , but the main impetus of the resear
h 
ameout of the original question regarding foliations.2. Re
tifiable Se
tions.Let B be a Riemannian �ber bundle with 
ompa
t �ber F over a Riemannian n-manifold M , withproje
tion π : B → M a Riemannian submersion. F is a j-dimensional 
ompa
t Riemannianmanifold. Following [10℄, B embeds isometri
ally in a ve
tor bundle π : E →M of some rank k ≥ j,whi
h has a smooth inner produ
t < , > on the �bers, 
ompatible with the Riemannian metri
on F . The inner produ
t de�nes a 
olle
tion of 
onne
tions, 
alled metri
 
onne
tions, whi
h are
ompatible with the metri
. Let a metri
 
onne
tion ∇ be 
hosen. The 
onne
tion ∇ de�nesa Riemannian metri
 on the total spa
e E so that the proje
tion π : E → M is a Riemanniansubmersion and so that the �bers are totally geodesi
 and isometri
 with the inner produ
t spa
e
Ex

∼= R
k [13℄, [5℄.We will be using multiindi
es α = (α1, . . . , αn−l), αi ∈ {1, . . . , n} with α1 < · · · < αn−l, over thelo
al base variables, and β = (β1, . . . , βl), βj ∈ {1, . . . , k} with β1 < · · · < βl, over the lo
al �bervariables (we will at times need to 
onsider the ve
tor bundle �ber, as well as the 
ompa
t �ber F ;whi
h is 
onsidered will be 
lear by 
ontext). The range of pairs (α, β) is over all pairs satisfying

|β| + |α| = n, where |(α1, . . . , αm)| := m. As a notational 
onvenien
e, denote by n the n-tuple
n := (1, . . . , n), and denote the null 0-tuple by 0.De�nition 1. An n-dimensional 
urrent T on a Riemannian �ber bundle B over a Riemannian
n-manifold M lo
ally, over a 
oordinate neighborhood Ω on M , de
omposes into a 
olle
tion, 
alled
omponents, or 
omponent 
urrents of T , with respe
t to the bundle stru
ture. Given lo
al 
oordi-nates (x, y) on π−1(Ω) = Ω×R

k and a smooth n-form ω ∈ En(Ω×R
k), ω := ωαβdx

α ∧ dyβ , de�neauxiliary 
urrents Eαβ by Eαβ(ω) :=
∫
ωαβd ‖T‖, where ‖T‖ is the measure θHn|−Supp(T ), with

Hn Hausdor� n-dimensional measure in Ω × R
k and θ the multipli
ity of T [11, pp 45-46℄. The
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omponent 
urrents of T are de�ned in terms of 
omponent fun
tions tαβ : Ω × R
k → R and theauxiliary 
urrents, by:

T |π−1(Ω) := {Tαβ} := {tαβEαβ} .The 
omponent fun
tions tαβ : π−1(Ω) → R are determined (a.e) by the 
urrent T and the pairingbetween T and an n-form ω ∈ En(E)|−Ω× R
k, given by:

T (ω) :=

∫

Ω×Rk

∑

αβ

tαβωαβd ‖T‖ .De�nition 2. A bounded 
urrent T in E is a (bounded) quasi-se
tion if, for ea
h 
oordinateneighborhood Ω ⊂M ,(1) tn0 ≥ 0 for ‖T‖-almost all points p ∈ Supp(T ), that is < −→
T (q), e(q) >≥ 0, ‖T‖-almosteverywhere; where e(q) is the unique horizontal (that is, perpendi
ular to the �bers) n-plane at q whose orientation is preserved under π∗.(2) π#(T ) = 1[M ] as an n-dimensional 
urrent on M .(3) ∂T = 0 (equivalently, for any Ω ⊂M , ∂ (T |−π−1(Ω)

) has support 
ontained in ∂π−1(Ω)).Note that ea
h of these 
onditions is 
losed under weak 
onvergen
e. For the �rst, tn,0 ≥ 0 if
T (φ) ≥ 0 for all φ = ηdx1 ∧ · · · ∧ dxn, where η is a smooth, positive fun
tion with support in aneighborhood of p. If Ti is a sequen
e of su
h 
urrents and Ti ⇀ T , then T will also satisfy that
ondition. Similarly, for the se
ond 
ondition, π#(T ) = 1[M ] if and only if T (π∗(dV )) = V ol(M),whi
h is again 
learly 
losed under weak 
onvergen
e. The third 
ondition, likewise, translates as
0 = T (dφ) for all smooth forms φ, whi
h is also 
losed under weak 
onvergen
e.De�nition 3. There is an A > 0 so that the �ber bundle B is 
ontained in the disk bundle EA ⊂ Ede�ned by EA := {v ∈ E |‖v‖ < A}, by 
ompa
tness of B. De�ne the spa
e Γ̃(E) to be the set ofall 
ountably re
ti�able, integer multipli
ity, n-dimensional 
urrents whi
h are quasi-se
tions in E,with support 
ontained in EA , 
alled (bounded) re
ti�able se
tions of E, whi
h by the above is aweakly-
losed set. The spa
e Γ(E) of (strongly) re
ti�able se
tions of E is the smallest sequentiallyweakly-
losed spa
e 
ontaining the graphs of C1 se
tions of E whi
h are supported within EA.Thus, a quasi-se
tion whi
h is re
ti�able and of integer multipli
ity is an element of Γ̃(E). It wouldseem to be a stri
tly stronger 
ondition for it to be in Γ(E), however, it is shown in [2℄ that, over abounded domain Ω, Γ̃(Ω× R

k) = Γ(Ω× R
k). This extends to the statement that Γ̃(E) = Γ(E) fora ve
tor bundle over a 
ompa
t manifold M , sin
e any su
h 
an be de
omposed into �nitely manybounded domains where the bundle stru
ture is trivial, by a partition of unity argument.The spa
e Γ̃(B) of re
ti�able se
tions of B is the subset of Γ̃(E) of 
urrents with support in B, whi
his a weakly 
losed 
ondition with respe
t to weak 
onvergen
e. Weak 
losure follows sin
e, for anypoint z outside of B, there is a smooth form supported in a 
ompa
t neighborhood of z disjoint from

B. The spa
e Γ(B) of strongly re
ti�able se
tions is the smallest sequentially, weakly-
losed spa
e
ontaining the graphs of C1 se
tions of B. Sin
e the �bers of B are 
ompa
t, as is the base manifold
M , minimal-mass elements will exist in Γ̃(B) or Γ(B), and mass-minimizing sequen
es within anyhomology 
lass will have 
onvergent subsequen
es in Γ̃(B) or Γ(B). This follows from lower semi-
ontinuity with respe
t to 
onvergen
e of 
urrents, 
onvexity of the mass fun
tional, and the 
losureand 
ompa
tness theorems for re
ti�able 
urrents. Closure of the 
onditions of de�nition (2) underweak 
onvergen
e will imply that the limits given by the 
losure and 
ompa
tness theorems, whi
hare a priori re
ti�able 
urrents, are indeed re
ti�able se
tions. For 
ompa
t manifolds, as above,
Γ̃(E) = Γ(E), but it is not the 
ase that Γ̃(B) = Γ(B) in general (see Proposition (14) below).



4 DAVID L. JOHNSON AND PENELOPE SMITHRemark 4. A simple modi�
ation of the Federer-Flemming 
losure and 
ompa
tness theorems showsthe following result: [6, 7℄Proposition 5. Let {Tj} ⊂ Γ(B) (resp, Γ̃(B)) be a sequen
e with equibounded �at norm. Then,there is a subsequen
e whi
h 
onverges weakly to a 
urrent T in Γ(B) (resp, Γ̃(B)) .De�nition 6. Given a 
urrent T , the indu
ed measures ‖T‖ and ‖Tαβ‖ are de�ned lo
ally by:
‖Tαβ‖ (A) := sup (Tαβ(ω)) , and
‖T‖ (A) := sup



∑

αβ

Tαβ(ω)


 ,where the supremum in either 
ase is taken over all n-forms on B, ω ∈ En

0 (B), with comass(ω) ≤ 1[3, 4.1.7℄ and Supp(ω) ⊂ A.2.1. Crofton's formula. The usual Crofton's formula (
f. for example [3, 3.2.26℄) for the measureof a re
ti�able set states that, if W is a re
ti�able, Hausdor� n-dimensional set in R
n+k, then

Hn(W ) =
1

β(n+ k, n)

∫

p∈O∗(n+k,n)

∫

Rn

N(p|W,y)dLn(y)dVO∗(N,n)(p),where N(p|W,y) is the multipli
ity at y ∈ R
n of the orthogonal proje
tion p : Rn+k → R

n restri
tedto W , O∗(n + k, n) is the spa
e of all su
h proje
tions with the natural metri
 of total volume 1,and β(n+ k, n) =
∫
p∈O∗(n+k,n) ‖p∗(P )‖ dVO∗(n+k,n)(p).Sin
e the mass of an integer-multipli
ity, 
ountably-re
ti�able n-
urrent T in R

n+k is the integralwith respe
t to Hausdor� n-dimensional measure restri
ted to the support of T of the absolutevalue of the multipli
ity θ, the mass of su
h a T 
an be represented by essentially the same integral-geometri
 formula.Proposition 7. If T is an integer-multipli
ity, 
ountably-re
ti�able n-
urrent in R
n+k, with multi-pli
ity θ, then the mass of T is given by

M(T ) =
1

β(n+ k, n)

∫

p∈O∗(n+k,n)

∫

Rn

N(p|T, y, θ)dLn(y)dVO∗(n+k,n)(p),where N(p|T, y, θ) = N(p|Supp(T ), y)|θ| is the multipli
ity at y ∈ R
n of the orthogonal proje
tion

p : R
n+k → R

n restri
ted to Supp(T ), multiplied at ea
h z ∈ p−1(y) ∩ Supp(T ) by |θ(z)|, and
O∗(n+ k, n) is the spa
e of all su
h proje
tions with the natural metri
 of total volume 1.For T ∈ Γ̃(B), and i ∈ 0, . . . , n, set Ti = ∑

|β|=i Tα,β. Ti is the sum of the 
omponents of T thathave i verti
al dire
tions. Take x0 ∈ M and R > 0. Set O∗(E,n, i) to be the set of orthogonalproje
tions from π−1(B(x0, R)) ∼= B(x0, R)×R
k ⊂ R

n+k := E whi
h preserve i verti
al dire
tions,that is, for whi
h the kernel 
ontains an R
k−i inside of the �ber dire
tions. Any su
h proje
tion isof 
ourse a dire
t produ
t of proje
tions p1 : B(x0, R) → R

n−i and p2 : Rk → R
i, so

O∗(E,n, i) = O∗(Rn, n− i)×O∗(Rk, i).If T is a smooth graph, T = graph(u), then
M(Ti|−π

−1(B(x0, R))) =

∫

B(x0,R)

∥∥∇u∧i
∥∥ dV.Proposition 8.

M(Ti|−π
−1(B(x0, R))) =

∫
p∈O∗(E,n,i)

∫
Rn N(p|T, y, θ)dLn(y)dVO∗(E,n,i)(p)

β(n, n − i)β(k, i)
.
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M(Ti|−π

−1(B(x0, R))) = sup {Ti(φ)| comass(φ) = 1}

= sup



T (φ)| comass(φ) = 1, φ =

∑

|β|=i

φαβdx
α ∧ dyβ





= sup

{∫

Supp(T )
<

−→
T (z), φ > θ(z)d ‖T‖

∣∣∣∣∣
comass(φ) = 1,
φ =

∑
|β|=i φαβdx

α ∧ dyβ

}

=

∫
Supp(T )

∫
p∈O∗(E,n,i)

∥∥∥p∗(
−→
T (z))

∥∥∥ dVO∗(E,n,i)(p)θ(z)d ‖T‖

β(n, n − i)β(k, i)

=

∫
p∈O∗(E,n,i)

∫
Supp(T )

∥∥∥p∗(
−→
T (z))

∥∥∥ θ(z)d ‖T‖ dVO∗(E,n,i)(p)

β(n, n− i)β(k, i)

=

∫
p∈O∗(E,n,i)

∫
Rn N(p|T, y, θ)dLn(y)dVO∗(E,n,i)(p)

β(n, n− i)β(k, i)
,where the last step follows from the general area-
oarea formula. �3. Existen
e of horizontal 
onesA 
urrent C ∈ Γ̃(B(x0, R) × F ) is an h-
one, or a horizontal 
one, at x0 if (hλ)#(C) = C. From[7℄, a tangent h-
one at x0 ∈ M of a re
ti�able se
tion T ∈ Γ̃(B) should be the limit of horizontaldilations of T . First, restri
t T to π−1(B(x0, r0)) ≅ B(x0, r0) × F . Then, for 0 < λ < r0,and r > 0, set hλ : B(x0, λr) × F → B(x0, r) × F by hλ(x, v) = (x0 + (x − x0)/λ, v), and set

Tλ := (hλ)#(T |−B(x0, λr) × F ). In the 
ase where T = graph(u), then Tλ is the graph of uλde�ned by uλ(x) = u(x0 + λ(x − x0)). Then, for a sequen
e λi ↓ 0, the h-
one H of T at x0 isthe weak limit H = limk (hλk
)# (T |−B(x0, λk) × F ), if that limit exists. Note that, as λ ↓ 0, the
urvature of the base will approa
h 0 and the bundle will be
ome �at. The h-
one is then de�nedon the Eu
lidean produ
t B(x0, r)× F ⊂ R

n × F .It was shown in [7℄ that, for mass-minimizing re
ti�able se
tions as 
onstru
ted in [6℄, h-
onesalways exist for some sequen
e of dilations, sin
e a simple monotoni
ity result shows that the set ofdilations Tλ will have equibounded mass. We provide here a more dire
t proof of this fa
t in the 
asewe need. Note that the existen
e of h-
ones is established only for the mass-minimizing 
urrents(with good partial-regularity) shown to exist in [6℄, whi
h are limits of a sequen
e of minimizers offun
tionals with an additional penalty term. It is not known whether other mass-minimizers exist,without the required partial regularity.For the moment, 
onsider an arbitrary bundle B → M with 
ompa
t �ber F . Let T be a �good�mass-minimizing re
ti�able se
tion, whi
h is regular over an open dense subset. As before, set
Ti =

∑
|β|=i Tα,β. From [3, 3.3.27℄,

M(T |−π
−1(B(x0, R))) ≤

n∑

i=0

M(Ti|−π
−1(B(x0, R))).This also follows dire
tly from the triangle inequality.In order to show that a sequen
e (hλ)#(T |−π−1(B(x0, λR))) of stret
hes 
onverges, we need to showthat ea
h 
omponent (hλ)#(Ti|−π−1(B(x0, λR))) has mass bounded independently of λ.



6 DAVID L. JOHNSON AND PENELOPE SMITHWe use the result from [6, Proposition 4.1℄, stating that, sin
e T is mass-minimizing and is the limitof penalty-minimizers, every point in supp(T ) has mass-density at least 1, and satis�es standardmonotoni
ity inequalities, M(T |−B(z, ǫ)) ≤ Aǫn.Consider T |−π−1(B(x0, R)). For ea
h z ∈ Supp(T |−π
−1(B(x0, R))), if ǫ > 0 is su�
iently small, theprevious estimate holds on T |−B(z, ǫ), M(T |−B(z, ǫ)) ≤ Azǫ

n. Sin
e Supp(T |−π−1(B(x0, λR))) is
ompa
t, there is a �nite sub
over U of su
h balls, with minimum radius ǫ. Let A be the maximumof the 
onstants Az for these balls. Now, let p ∈ O∗(E,n, i). Any ball 
entered at y ∈ Im(p) ⊂ R
nof radius ǫ will be su
h that p−1(y) meets �nitely many balls in this 
over U (sin
e the whole 
overis �nite). The mass of the image of ea
h of these balls is less than the mass of the ball in T , sin
eproje
tion is mass-de
reasing, so the total image mass within that ball, 
ounting multipli
ities, isless than the number of balls in the 
over whi
h interse
t p−1(y), times Aǫn. Thus, there is a
onstant C so that

M(p#(T |−π
−1(B(x0, R)))) ≤ CLn(p(Supp(T |−π

−1(B(x0R))))),where p#(T |−π−1(B(x0, R))) is the Crofton push-forward 
urrent as in �2.1, with multipli
ity fun
-tion N(p|T, y, θ) at ea
h point in the image.Similarly,
M(Ti|−π

−1(B(x0, R))) ≤ CLi(p(F ))ωn−iR
n−iwhere p(F ) is the image of the �ber F in R

i (F is a submanifold of Ex
∼= R

k), maximized over all
p ∈ O∗(E,n, i). This inequality follows sin
e the image of the proje
tion of T is 
ontained in theimage of F ×B(x0, R).For pre
isely the same reasons, with the same 
onstants,

M((hλ)#(Ti|−π
−1(B(x0, λR)))) ≤ CLi(p(F ))ωn−iR

n−i,sin
e the fa
tor of λ 
oming from the stret
h simply expands the image of ea
h proje
tion untilit again is 
ontained within the image of F × B(x0, R). The 
on
lusion of this argument is thefollowing proposition:Proposition 9. M((hλ)#(T |−π
−1(B(x0, λR)))) is bounded, independently of λ. Thus, given asequen
e λm ↓ 0, a subsequen
e of (hλm

)#(T |−π
−1(B(x0, λmR))) 
onverges to a re
ti�able se
tion

T0 in Γ̃(B(x0, R)× F ).Proof. Set Tm,R := (hλm
)#(T |−π

−1(B(x0, λmR))). Then, by taking a diagonal subsequen
e, forea
h j ∈ Z there is a 
urrent T j ∈ Γ̃(B(x0, j)×F ) so that (hλm
)#(T |−π

−1(B(x0, λmj))) ⇀ T j and
T j|−B(x0, l) × F = T l, whenever j > l, so that there is a 
urrent T 0 on Rn × F whi
h restri
ts toea
h of these T j . �We now spe
ialize to the 
ase of an Sn−1-bundle over a 
ompa
t n-manifold M .Proposition 10. Let B →M be an (n−1)-sphere bundle over a 
ompa
t n-manifoldM . Let T be agood mass-minimizing re
ti�able se
tion as before. Assume that x0 ∈M is a pole point of T so thatthe Hausdor� dimension of the pole is (n−1), that is, that the proje
tion map φr : S(n−1)(r)×Sn−1 →
Sn−1, indu
ing a Crofton proje
tion (φr)#(T |−S

(n−1)(r) × Sn−1) ∈ R
n−1(Sn−1), has limit havingpositive (n − 1)-dimensional mass A for some subsequen
e of the sequen
e rm = λmR. Then the
urrent T 0 of Proposition (9) will be an h-
one.



REGULARITY OF VOLUME-MINIMIZING FLOWS ON 3-MANIFOLDS 7Proof. Sin
e ea
h T j minimizes the s
aled and stret
hed fun
tional
Vj(S) := V((h−1

λj
)#(S))/

(
λjRM((φλjR)#(T |−S

n−1(λjR)× Sn−1)
)
,

T 0 will minimize the limiting fun
tional
V0(S|−B

n(x0, R)× Sn−1) = limVj(S|−B
n(x0, R)× Sn−1)

= M(Sn−1|−B
n(x0, R)× Sn−1),where Sn−1 :=

∑
|α|=1 Sαβ is that part of the 
urrent S whi
h has (n − 1) verti
al 
omponents,one horizontal 
omponent. The stret
hed fun
tionals Vj , as j → ∞, magnify the terms with moreverti
al 
omponents by the e�e
t of (h−1

λj
)#, and under the assumption that the pole at x0 hasHausdor� dimension (n − 1) that highest-order term will dominate all others in the normalizedlimit. This redu
es to ∫

B(x0,R)

∥∥∥∇u∧(n−1)
∥∥∥ dV,if S is a smooth graph S = graph(u). Note also that Mn−1(Sn−1|−∂B

n(x0, R) × Sn−1) is the
(n − 1)-dimensional mass of the proje
tion (φR)#(T

0|−S
n−1(R) × Sn−1). Sin
e T 0 minimizes, forany R

V0(T
0|−B

n(x0, R)× Sn−1) ≤ V0(C(T 0|−∂B
n(x0, R)× Sn−1))

= RMn−1(T 0
n−1

|−∂B
n(x0, R)× Sn−1)

= RMn−1
(
(φR)#(T

0|−S
n−1(R)× Sn−1)

)
,where C() denotes the h-
one over the boundary T0|−∂Bn(x0, R) × Sn−1). On the other hand, bysli
ing

d

dR
V0(T

0|−B
n(x0, R)× Sn−1) ≥ Mn−1(T 0

n−1
|−∂B

n(x0, R)× Sn−1)

= Mn−1
(
(φR)#(T

0|−S
n−1(R)× Sn−1)

)
,so that

d

dR

V0(T
0|−B

n(x0, R)× Sn−1)

R

=

d
dR

(
V0(T

0|−B
n(x0, R)× Sn−1)

)
R− V0(T

0|−B
n(x0, R)× Sn−1)

R

≥
Mn−1

(
(φR)#(T

0|−S
n−1(R)× Sn−1)

)
R− V0(T

0|−B
n(x0, R)× Sn−1)

R
≥ 0,and so V0(T

0|−B
n(x0, R)×S

n−1)/R is an in
reasing fun
tion of R. However, sin
e T 0 is invariant atleast under the sequen
e of stret
hes by hλj
, the proje
ted massMn−1

(
(φR)#(T

0|−S
n−1(R)× Sn−1)

)must be the same for R = λjR0, so that the values of Mn−1
(
(φR)#(T

0|−S
n−1(R)× Sn−1)

) repeatover the intervals [λj+1R0, λjR0] and the in
reasing fun
tion V0(T
0|−B

n(x0, R)×Sn−1)/R satis�es
V0(T

0|−B
n(x0, R)× Sn−1)

R
≤ Mn−1

(
(φR)#(T

0|−S
n−1(R)× Sn−1)

)so
V0(T

0|−B
n(x0, R)× Sn−1)/R ≤ inf

(
Mn−1

(
(φR)#(T

0|−S
n−1(R)× Sn−1)

))
.
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e
V0(T

0|−B
n(x0, R)× Sn−1) ≥

∫ R

0
Mn−1

(
(φr)#(T

0|−S
n−1(r)× Sn−1)

)
dr

≥ R inf
(
Mn−1

(
(φR)#(T

0|−S
n−1(R)× Sn−1)

))
,all of these inequalities must be equalities, and ne
essarily Mn−1

(
(φR)#(T

0|−S
n−1(R)× Sn−1)

)must be 
onstant. Moreover,
V0(T

0|−B
n(x0, R)× Sn−1) = V0(C(T 0|−∂B

n(x0, R)× Sn−1)),and sin
e any 
hange with respe
t to the radial dire
tion (of positive measure) would introdu
e astri
t inequality in that integral, T 0|−B
n(x0, R) × Sn−1 = C(T 0|−∂B

n(x0, R) × Sn−1) T 0-almosteverywhere. Thus T 0 is an h-
one. �The degree of a re
ti�able se
tion C ∈ Γ̃(Sn−1 × Sn−1) is de�ned by
deg(C) :=

∫

I(C)
dVSn−1 =

∫

C

Π∗
2(dVSn−1) = C(Π∗

2(dVSn−1)),whi
h is 
learly a weakly 
losed 
ondition. If C is the graph of a smooth map φ : Sn−1 → Sn−1,then deg(C) = deg(φ), and in parti
ular, if φ is the restri
tion of a smooth map Φ : Bn → Sn−1to the boundary, then deg(C) = 0. By taking trans�nite limits, if C arises from the h-
one of astrongly re
ti�able se
tion S ∈ Γ(Bn × Sn−1), deg(C) = 0 sin
e C is a weak limit of degree-zero
urrents.De�nition 11. The degree of a pole point x0 ∈ Mn of a re
ti�able se
tion S ∈ Γ(B), where Bis an Sn−1-bundle over M , deg(S, x0), is the degree of the restri
tion of an h-
one ψ of S to theboundary ψ|−Sn−1(r)× Sn−1.Theorem 12. If B is an (n− 1)-sphere bundle over a 
ompa
t n-manifold M , and if T ∈ Γ̃(B) isa smooth graph ex
ept on a �nite set of �bers π−1(xi), so that the degree of ea
h singular �ber is 0and so that there is an h-
one at ea
h �ber, then T ∈ Γ(B).Proof. The only part of this statement requiring proof is that, in a neighborhood of ea
h singular�ber, the 
urrent is a limit of smooth 
urrents. Certainly, if the degree of any of the singular�bers is nonzero it 
annot be in Γ(B). If the degree is 0, however, sin
e the graph is smoothwithin the boundary spheres Sn−1(r) × Sn−1 of B|−π
−1(B(x0, r)) ∼= B(x0, r) × Sn−1, the h-
oneis a 
one over a 
urrent S ∈ Γ(Sn−1(1) × Sn−1), in fa
t, S is the limit of the smooth sequen
e ofstret
hes of T |−Sn−1(r)× Sn−1. Sin
e the degree of the singularity is 0, ea
h graph T |−Sn−1(r)×

Sn−1 is (smoothly) homotopi
 to the 
onstant map, mapping Sn−1(r) to p0 ∈ Sn−1. If H(x, t) :
Sn−1(r) × [0, 1] → Sn−1 is that homotopy, then the graph G(y) : B(x0, r) → Sn−1 de�ned by
G(y) = H(ry/|y|, 1 − |y|/r) will be a smoothable graph whi
h 
an be extended to a se
tion of Bagreeing with T outside of this neighborhood. Clearly, given a sequen
e ri → 0, the maps

Ti =

{
Gri , d(x0, x) < ri

T, d(x0, x) ≥ riwill be a sequen
e of 
urrents 
onverging weakly to T , whi
h are smooth in a neighborhood ofthe pole point x0. Sin
e there are �nitely many singular points of T by hypothesis, iterating this
onstru
tion will generate a sequen
e of smooth 
urrents 
onverging to T . �
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tifiable foliations, re
tifiable se
tions.Consider now the 
ase where B is the subbundle T1(M) of unit ve
tors in T∗(M). The 
onne
tionused to de�ne the metri
 on T∗(M) restri
ts to an asso
iated 
onne
tion on T1(M), sin
e the
onne
tion is a metri
 
onne
tion, and de�nes a metri
 on T1(M) as before.Re
ti�able 1-dimensional foliations onM are re
ti�able se
tions of T∗(M) whose support lies within
T1(M). As above, this 
ondition will be weakly 
losed, so that the Federer 
losure and 
ompa
tnesstheorems hold.Theorem 13. [7, 6℄ For any homology 
lass of se
tions in Γ̃(T1(M)), there is a mass-minimizingre
ti�able foliation F with support whi
h is the Gauss map of a C1 graph over an open, dense subsetof M .The regular points of a re
ti�able foliation S 
orrespond to points where the Gauss map is 
ontin-uous, and singularities, or pole points, are points x ∈ M where the Gauss map is dis
ontinuous.Equivalently, pole points are those x ∈M for whi
h the set Supp(S)∩π−1(x) 
onsists of more thanone point. Points of Supp(S) lying over pole points are 
alled pole elements.4.1. The degree of a pole point. Let S be a mass-minimizing re
ti�able se
tion of T1(M3). By[8℄, there is su
h a minimizer with only a �nite number of pole points, ea
h of whi
h 
ontains theentire �ber in the support of S. Note that, in[8℄, the results need to be modi�ed to indi
ate that [6℄does not show that any minimizer has the required smoothness, only that there is one minimizerwith the 
laimed partial regularity. Assume that S is su
h a minimizer. The question of regularityof a mass-minimizing se
tion of T1(M3) be
omes whether su
h a pole point 
an exist.If x0 is an isolated pole point of S ∈ Γ̃(T1(M

n)), by Proposition (10) there is an h-
one 
enteredat x0. By Theorem (12), S ∈ Γ(T1(M
n)). In addition, the h-
one at x0 is a re
ti�able se
tion

ψ ∈ Γ(Bn × Sn−1), when restri
ted to a ball of radius 1 in the base. Sli
ing the h-
one ψ by a
ylinder of radius r generates a re
ti�able 
urrent C in Sn−1(r)×Sn−1 ∼= Sn−1×Sn−1 for almost any
r by sli
ing theory. Sin
e ψ is an h-
one, however, C is independent of r, thus the sli
e is re
ti�ablefor all r, and so is in Γ(Sn−1 ×Sn−1) as a bundle over the �rst fa
tor. The key to existen
e of su
ha singularity is the degree of the 
urrent C.Sin
e S has no interior boundary, and by [8℄ the support of S 
ontains all of π−1(x0), the image I(C)of C, de�ned as the push-forward image (Π2)#(C), for Π2 : Sn−1 × Sn−1 → Sn−1 the proje
tiononto the se
ond fa
tor (the �ber), must have support the entire sphere.We now return to the 
laim in Se
tion 2 that not all weak re
ti�able se
tions are strong re
ti�ablese
tions.Proposition 14. Γ̃(T1(S2)) 6= Γ(T1(S

2)).Proof. Sin
e there are no 
ontinuous se
tions of T1(S2), that is, Γ(T1(S2)) = ∅, it su�
es to showthat Γ̃(T1(S
2)) 6= ∅. Given a point p ∈ S2, and v ∈ T1(S

2, p), translate v parallel to itself alonglongitudes to −p. The re
ti�able se
tion generated by this pro
edure will have a singular point at
−p, with the entire �ber of the sphere bundle in the support over −p. Sin
e there is no boundaryand it proje
ts to 1[S2] on S2\{−p}, it is an element of Γ̃(T1(S2)). �Remark 15. Of 
ourse, this 
urrent is an element of Γ(T∗(S

2)), and is the limit of a sequen
eof smooth ve
tor �elds, ea
h of whi
h has a zero of degree 2 at −p, with length 1 outside ofneighborhoods of −p. It should also be noted that this topologi
al obstru
tion is not the only waythat it 
an be possible for Γ̃(B) 6= Γ(B) for B an (n−1)-sphere bundle on an n-manifold. Sin
e thedegree of an isolated singularity is lo
al, it follows that any isolated singularities of T ∈ Γ(B) will



10 DAVID L. JOHNSON AND PENELOPE SMITHhave degree 0. But even on a sphere bundle B with global smooth se
tions, it is easy to 
onstru
tsingular se
tions with two isolated singularities, one of degree 2 and the other of degree -2. Su
hsingular se
tions are 
learly in Γ̃(B)\Γ(B).5. Non-Existen
e of Isolated SingularitiesNow that we have shown that an isolated pole of a volume-minimizing se
tion S of T1(M) ne
essarilystret
hes to an energy-minimizing se
tion S0 for the limiting volume V0, we pro
eed to show that it
annot exist if the degree of the pole is 0. As before, set S0 ∈ Γ̃R(B(0, r) × Sn−1) to be an h-
oneof S, and set C := S0|−S
n−1 × Sn−1 (r may be assumed to be larger than 1).Theorem 16. If S is a volume-minimizing re
ti�able se
tion of T1(M) whi
h is 
ontinuous overan open, dense subset of M , then S 
annot have a degree-zero isolated pole point x0, with supp(S)∩

π−1(x0) = Sn−1 = π−1(x0).Proof. Let S be a mass-minimizing se
tion whi
h is 
ontinuous over an open, dense subset, asguaranteed by [6℄, as dis
ussed above. Assume that S has a degree-zero isolated singularity x0,with the entire �ber 
ontained in the support of S. There is a h-
one S0 of S at x0 by �3. The
urrent C = S0|−S
n−1(r) × Sn−1 has degree 0, as in �4.1, and so there is a re
ti�able 
urrent

F so that ∂F = C − graph(constant) in Sn−1 × Sn−1. In fa
t, the h-
one S0 
an be used to
onstru
t su
h a 
urrent F0 whi
h is a �re
ti�able homotopy�, that is, whi
h extends to a re
ti�ablese
tion on (
Sn−1 × I

)
× Sn−1as an n-dimensional 
urrent with ∂F = C × 0 − S2n−1 × {pt} × 1.For ea
h i in a sequen
e Si ∈ Γ̃(B(x0, 1) × Sn−1) 
onverging to the h-
one S0, and for ea
h r,

Si|−∂B(x0, r) × Sn−1 = Si(r)|−S
n−1 × S is a smooth graph of degree 0, so there is a re
ti�able
urrent �fen
e� Fi(r) of dimension n so that ∂Fi(r) = Si(r)|−S

n−1×S−graph(constant)|−S
n−1×S .Sin
e Si ⇀ S0, whi
h is a 
one, Fi(r) 
an be 
hosen with bounded mass, so there is a 
onvergentsubsequen
e with limit F0(r). Sin
e S0 is an h-
one, it may be assumed that F0(r) = (hr)#(F0(1)).The 
urrent

Sr := S0|−B(x0, R)\B(x0, r)× Sn−1 + F0(r) + graph(constant)|−B(x0, r)has the same boundary as S0|−B(x0, R). However, S0|−B(x0, R) minimizes the limiting fun
tional
V0, so, independent of r, V0(Sr) ≥ V0(S0). But,

V0(Sr) = V0

(
S0|−B(x0, R)\B(x0, r)× Sn−1 + F0(r) + graph(constant)|−B(x0, r)

)

= V0

(
S0|−B(x0, R)\B(x0, r)× Sn−1

)
+ V0 (F0(r)) ,sin
e V0(graph(constant)) = 0. In addition, V0 (F0(r)) = A is independent of radius sin
e V0(F0(r))is the mass of the image of F0(r) under the proje
tion onto Sn−1. However,

V0(S0|−B(x0, R))− V0

(
S0|−B(x0, R)\B(x0, r)× Sn−1

)
= Brsin
e S0 is an h-
one. The 
onstants A and B do not depend upon R, ex
ept for the limitationthat r < R. Clearly, for R su�
iently large V0(S0|−B(x0, R))−V0(Sr) = Br−A will eventually bepositive for some r large enough, 
ontradi
ting the fa
t that S0|−B(x0, R) minimizes V0 there. �Corollary 17. If M is a 
ompa
t 3-manifold, then there is a volume-minimizing one-dimensionalfoliation of 
lass C1.Proof. By [8℄, there is a volume-minimizing re
ti�able se
tion of T1(M) with only isolated singularpoints, for whi
h the support of ea
h 
ontains the entire �ber. Su
h isolated poles 
annot exist bythe theorem, so there is a re
ti�able se
tion with no poles, so that the se
tion is 
ontinuous on allof M . Sin
e that se
tion is the tangent �eld of the foliation, the foliation is of 
lass C1. �
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ase as shown below.Corollary 19. The re
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