REGULARITY OF VOLUME-MINIMIZING FLOWS ON 3-MANIFOLDS

DAVID L. JOHNSON AND PENELOPE SMITH

ABsTRACT. In [7, 6, 8] the authors characterized the singular set (discontinuities of the graph)
of a volume-minimizing rectifiable section of a fiber bundle, showing that, except under certain
circumstances, there exists a volume-minimizing rectifiable section with the singular set lying over
a codimension-3 set in the base space. In particular, it was shown that for 2-sphere bundles over
3-manifolds, a minimizer exists with a discrete set of singular points.

In this article, we show by analysis of the characterizing horizontal tangent cone, or h-cone,
that for a 2-sphere bundle over a compact 3-manifold, such a singular point cannot exist. As a
corollary, for any compact 3-manifold, there is a C* volume-minimizing one-dimensional foliation.
In addition, this same h-cone analysis is used to show that the examples, due to Sharon Pedersen
[12], of potentially volume-minimizing rectifiable sections (rectifiable foliations) of the unit tangent
bundle to $%"*! are not, in fact, volume minimizing.

1. INTRODUCTION

In [4], Herman Gluck and Wolfgang Ziller asked which one-dimensional, transversely oriented folia-
tion F (called a flow) on an odd-dimensional round sphere is best-organized, in the sense that the
image of the natural section £ : M — Tj(M) of the unit tangent bundle, whose value at x is the
unit tangent vector of the leaf of F through x consistent with the orientation of F, has smallest
n-dimensional Hausdorff measure.

Their work was in part an effort to interpret the behavior of the Hopf fibration of the three-sphere,
and indeed they were able to show that the Hopf fibration did minimize the volume. Specifically,
they were able to show that there is a three-form on Ty(S®) which calibrates the fibers of the
Hopf fibrations on S3, thus those foliations have the least volume of all such flows on the round
three-sphere. However, in higher dimensions the Hopf fibrations are not volume-minimizing, and it
is likely that volume-minimizing flows on these manifolds are singular. In her thesis [12], Sharon
Pedersen illustrated a stable, singular foliation which has much less mass than the Hopf fibration
of S°.

The purpose of the present work is to show that the regularity of Gluck and Ziller’s volume-
minimizing flow on S® is a special case of a theorem that there is a regular (C! as a foliation)
volume-minimizing flow on compact, oriented 3-manifold. Similarly, there are volume-minimizing
sections of the unit tangent bundle (or other (n — 1)-sphere bundles over n-dimensional mani-
folds) without isolated poles. As a corollary result, it will follow that Pedersen’s currents are not
volume-minimizing among rectifiable sections of Ty (S***1).

1.1. Volume of Foliations. The volume of a one-dimensional foliation F on a compact manifold
M can be computed in terms of the Gauss map § : M — T1(M) defined by mapping = to a unit

Date: May 16, 2011.

2000 Mathematics Subject Classification. 49F20, 49F22, 49F10, 58A25, 53C42, 53C65.

Key words and phrases. Geometric measure theory, foliations, sections, volume, minimal submanifolds.
1



2 DAVID L. JOHNSON AND PENELOPE SMITH

vector &(x) tangent to F at z, which can be chosen consistently if F is oriented. The formula is
given as:

vE) = /M \/1 FIVENE 4 + ||VENE=D |2 avi,

where the vector wedge is interpreted by
1
Va A V,B(X, Y) = §(VXC¥ AVyp —VyaA Vx,@),

etc., so that

The sum is taken over wedges of order up to n — 1 since the fiber (S"~1) is (n — 1)-dimensional.
Although this is precisely the n-dimensional Hausdorff measure of the image, which is the mass
of the rectifiable current representing the Gauss map as a current in 77 (M), this description has
certain advantages.

This definition can be extended to sections ¢ of any smooth fiber-bundle B — M with compact fiber
F, as defined in [7, 6]. The volume functional is essentially the same, except that the highest-degree
term in the square root is the minimum of the dimension of M or that of the fiber,

Vo) = /\/1+uvau2+---+Hvamwde,
M

with terms HVJiH2 being 0 for i > dim(F'). The results of this article will apply equally to any
S~ L.bundle over a compact, oriented n-manifold M, but the main impetus of the research came
out of the original question regarding foliations.

2. RECTIFIABLE SECTIONS.

Let B be a Riemannian fiber bundle with compact fiber F' over a Riemannian n-manifold M, with
projection m : B — M a Riemannian submersion. F' is a j-dimensional compact Riemannian
manifold. Following [10], B embeds isometrically in a vector bundle 7 : E — M of some rank k > j,
which has a smooth inner product <, > on the fibers, compatible with the Riemannian metric
on F'. The inner product defines a collection of connections, called metric connections, which are
compatible with the metric. Let a metric connection V be chosen. The connection V defines
a Riemannian metric on the total space E so that the projection # : E — M is a Riemannian
submersion and so that the fibers are totally geodesic and isometric with the inner product space
E, =R [13], [5].

We will be using multiindices o = (aq,...,a,—), a; € {1,...,n} with ay < -+ < ay,_y, over the
local base variables, and § = (f1,...,3), B € {1,...,k} with 81 < --- < 3, over the local fiber
variables (we will at times need to consider the vector bundle fiber, as well as the compact fiber F,
which is considered will be clear by context). The range of pairs («, 3) is over all pairs satisfying
IB] + |a| = n, where |(aq,...,qm,)| == m. As a notational convenience, denote by n the n-tuple
n:=(1,...,n), and denote the null O-tuple by 0.

Definition 1. An n-dimensional current 7" on a Riemannian fiber bundle B over a Riemannian
n-manifold M locally, over a coordinate neighborhood 2 on M, decomposes into a collection, called
components, or component currents of T, with respect to the bundle structure. Given local coordi-
nates (z,y) on 7 1(Q2) = Q x R¥ and a smooth n-form w € E"(Q x R¥), w 1= w,pdz® A dy?, define
auxiliary currents E,g by Eas(w) := [wasd ||T|, where ||T| is the measure §H"|_Supp(T), with
H" Hausdorff n-dimensional measure in  x R* and 6 the multiplicity of T [11, pp 45-46]. The
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component currents of T are defined in terms of component functions t,5 : € x R¥ — R and the
auxiliary currents, by:

T|7r*1(ﬂ) = {Taﬁ} = {taﬁEaﬁ} .
The component functions ¢,z : 7 1(2) — R are determined (a.e) by the current T and the pairing
between T’ and an n-form w € E™(E)_Q x R*, given by:

T@)i= [ Y taswasd T]|.
ap

Definition 2. A bounded current 7 in E is a (bounded) quasi-section if, for each coordinate
neighborhood 2 C M,

(1) tpo > 0 for ||T||-almost all points p € Supp(T), that is < ?(q),e(q) >> 0, ||T']]-almost
everywhere; where e(q) is the unique horizontal (that is, perpendicular to the fibers) n-
plane at ¢ whose orientation is preserved under m,.

(2) mx(T) = 1[M] as an n-dimensional current on M.

(3) 0T = 0 (equivalently, for any Q C M, 0 (TLW*1(9)> has support contained in d7~1(12)).

Note that each of these conditions is closed under weak convergence. For the first, t,o > 0 if
T(¢) > 0 for all ¢ = ndx' A --- A dz™, where 7 is a smooth, positive function with support in a
neighborhood of p. If T; is a sequence of such currents and 7; — T, then T will also satisfy that
condition. Similarly, for the second condition, 74 (T") = 1[M] if and only if T'(7*(dV')) = Vol(M),
which is again clearly closed under weak convergence. The third condition, likewise, translates as
0 = T'(d¢) for all smooth forms ¢, which is also closed under weak convergence.

Definition 3. Thereis an A > 0 so that the fiber bundle B is contained in the disk bundle £4 C £
defined by E4 := {v € E|||v| < A}, by compactness of B. Define the space I'(E) to be the set of
all countably rectifiable, integer multiplicity, n-dimensional currents which are quasi-sections in F,
with support contained in F 3, called (bounded) rectifiable sections of E, which by the above is a
weakly-closed set. The space I'(E) of (strongly) rectifiable sections of E is the smallest sequentially
weakly-closed space containing the graphs of C'! sections of E which are supported within E4.

Thus, a quasi-section which is rectifiable and of integer multiplicity is an element of f(E) It would
seem to be a strictly stronger condition for it to be in I'(E), however, it is shown in [2] that, over a
bounded domain €, ['(Q x RF) = I'(Q x R¥). This extends to the statement that I'(E) = I'(E) for
a vector bundle over a compact manifold M, since any such can be decomposed into finitely many
bounded domains where the bundle structure is trivial, by a partition of unity argument.

The space I'(B) of rectifiable sections of B is the subset of T'(E) of currents with support in B, which
is a weakly closed condition with respect to weak convergence. Weak closure follows since, for any
point z outside of B, there is a smooth form supported in a compact neighborhood of z disjoint from
B. The space I'(B) of strongly rectifiable sections is the smallest sequentially, weakly-closed space
containing the graphs of C! sections of B. Since the fibers of B are compact, as is the base manifold
M, minimal-mass elements will exist in f(B) or I'(B), and mass-minimizing sequences within any
homology class will have convergent subsequences in I'(B) or I'(B). This follows from lower semi-
continuity with respect to convergence of currents, convexity of the mass functional, and the closure
and compactness theorems for rectifiable currents. Closure of the conditions of definition (2) under
weak convergence will imply that the limits given by the closure and compactness theorems, which
are a priori rectifiable currents, are indeed rectifiable sections. For compact manifolds, as above,

['(E) = I'(E), but it is not the case that I'(B) = I'(B) in general (see Proposition (14) below).
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Remark 4. A simple modification of the Federer-Flemming closure and compactness theorems shows
the following result: [6, 7]

Proposition 5. Let {T;} C I'(B) (resp, I'(B)) be a sequence with equibounded flat norm. Then,
there is a subsequence which converges weakly to a current T in I'(B) (resp, T'(B)) .

Definition 6. Given a current 7', the induced measures ||T'|| and ||T,3| are defined locally by:

[Tapll (A) = sup(Tap(w)), and
ITIH(A) = sup [ Y Tap(w) |,
af

where the supremum in either case is taken over all n-forms on B, w € Ej(B), with comass(w) <1
[3, 4.1.7] and Supp(w) C A.

2.1. Crofton’s formula. The usual Crofton’s formula (cf. for example [3, 3.2.26]) for the measure
of a rectifiable set states that, if W is a rectifiable, Hausdorff n-dimensional set in R”**, then

),
VTP N (pIW, y)dL" (y)dVou(N.n) (P);
/B(n + k, n) peO*(n+k,n) JR™ (W)
where N (p|W,y) is the multiplicity at y € R™ of the orthogonal projection p : R"** — R™ restricted
to W, O*(n + k,n) is the space of all such projections with the natural metric of total volume 1,

and B(n+ k1) = [,com i 1P+(P) dVosmtnn (P)-

Since the mass of an integer-multiplicity, countably-rectifiable n-current 7' in R™** is the integral
with respect to Hausdorff n-dimensional measure restricted to the support of T" of the absolute
value of the multiplicity €, the mass of such a T can be represented by essentially the same integral-
geometric formula.

H(W) =

Proposition 7. If T is an integer-multiplicity, countably-rectifiable n-current in R™* with multi-
plicity 0, then the mass of T 1is given by

1
MT)=—— /
/8(” + k, TL) peO*(n+k,n) JR"
where N (p|T,y,0) = N(p|Supp(T),y)|0| is the multiplicity at y € R™ of the orthogonal projection
p @ R™F — R™ restricted to Supp(T), multiplied at each z € p~t(y) N Supp(T) by |0(z)|, and
O*(n+ k,n) is the space of all such projections with the natural metric of total volume 1.

N(p‘Ta Y, G)dﬁn(y)dVO*(nJrk,n) (p)a

For T € f(B), and i € 0,...,n, set T; = ZW\:z‘ T,3. T; is the sum of the components of T that
have i vertical directions. Take zyp € M and R > 0. Set O*(E,n,i) to be the set of orthogonal
projections from 7~ 1(B(zo, R)) = B(zo, R) X RF ¢ R"** .= E which preserve i vertical directions,
that is, for which the kernel contains an R*~% inside of the fiber directions. Any such projection is
of course a direct product of projections p; : B(zg, R) — R" % and p, : R¥ — R?, so

O*(E,n,i) = O*(R",n — i) x O*(R* 7).
If T'is a smooth graph, T' = graph(u), then

ML (Bl ) = [

v av
B(xo,R)

Proposition 8.

prO*(E,n,i) fR" N(p|Ta Y, H)d[’n(y)dVO*(E,n,z) (p)

M(T;Ln~ (B(z0, R))) = B(n,n — 1)B(k,q)
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Proof. (Compare [11, 3.16])
MTLa " (Blao, B)) = sup{Ti(6)| comass(s) = 1}

= sup{ T(¢)|comass(¢p) =1,¢ = Z bapdr™ A dy”

|B|=i
- { /Supp( T) = 7 )¢ > 0()d|T ;OZCST;@Z Qbo;’dzco‘ A dyﬁ }
Ssupn(ry Jycon 5y [P (T (2D)]| Vo000 () IT

Bn,n — i)B(k, )
Sreor 5 Ssummiry [T )| 6YAITY Vopa i ()

Bn,n —0)B(k, )
Jocor(miy Jen NOIT,y,0)dL™ () AV (1.n.)(P)

B, n — )8 (k. 1) ’

where the last step follows from the general area-coarea formula. O

3. EXISTENCE OF HORIZONTAI CONES

A current C € T'(B(wo, R) x F) is an h-cone, or a horizontal cone, at xq if (ha)#(C) = C. From
[7], a tangent h-cone at xg € M of a rectifiable section T' € I'(B) should be the limit of horizontal
dilations of T. First, restrict T to 7 '(B(zg,70)) & B(wg,r0) x F. Then, for 0 < X < 7o,
and 7 > 0, set hy : B(xzg, \r) X F — B(zg,r) X F by hy(xz,v) = (xo + (x — x9)/A,v), and set

) = (ha)x(TL_B(zg,A\r) x F). In the case where T = graph(u), then T) is the graph of uy
defined by wy(z) = u(zog + AM(x — x¢)). Then, for a sequence \; | 0, the h-cone H of T at xg is
the weak limit H = limy (ha, )y, (T|L_B(z0, \i) x F), if that limit exists. Note that, as X | 0, the
curvature of the base will approach 0 and the bundle will become flat. The h-cone is then defined
on the Euclidean product B(zg,r) x FF C R™ x F.

It was shown in [7] that, for mass-minimizing rectifiable sections as constructed in [6], h-cones
always exist for some sequence of dilations, since a simple monotonicity result shows that the set of
dilations T} will have equibounded mass. We provide here a more direct proof of this fact in the case
we need. Note that the existence of h-cones is established only for the mass-minimizing currents
(with good partial-regularity) shown to exist in [6], which are limits of a sequence of minimizers of
functionals with an additional penalty term. It is not known whether other mass-minimizers exist,
without the required partial regularity.

For the moment, consider an arbitrary bundle B — M with compact fiber F'. Let T be a “good”
mass-minimizing rectifiable section, which is regular over an open dense subset. As before, set
T, = ZW\:z‘ T - From (3, 3.3.27],

M(T_n=Y(B(xo, R <ZM (T;_7~1(B(z0, R))).

This also follows directly from the triangle inequality.

In order to show that a sequence (hy)4(TL7~(B(z0, AR))) of stretches converges, we need to show
that each component (hy)x(T;l_7~"(B(20, AR))) has mass bounded independently of .
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We use the result from [6, Proposition 4.1], stating that, since 7" is mass-minimizing and is the limit
of penalty-minimizers, every point in supp(T’) has mass-density at least 1, and satisfies standard
monotonicity inequalities, M(T|_B(z,¢€)) < Ae".

Consider T|_7~(B(z¢, R)). For each z € Supp(T|_m~(B(zo, R))), if € > 0 is sufficiently small, the
previous estimate holds on T|_B(z,¢), M(T|_B(z,¢€)) < A.€e". Since Supp(T|_n~1(B(zo, AR))) is
compact, there is a finite subcover U of such balls, with minimum radius €. Let A be the maximum
of the constants A, for these balls. Now, let p € O*(FE,n,i). Any ball centered at y € Im(p) C R"
of radius € will be such that p~!(y) meets finitely many balls in this cover I (since the whole cover
is finite). The mass of the image of each of these balls is less than the mass of the ball in T, since
projection is mass-decreasing, so the total image mass within that ball, counting multiplicities, is
less than the number of balls in the cover which intersect p~'(y), times Ae™. Thus, there is a
constant C so that

M(py(TLa="(B(o, R)))) < CL (p(Supp(Tl-7~" (B(xoR))))),

where py (TL_71(B(z0, R))) is the Crofton push-forward current as in §2.1, with multiplicity func-
tion N (p|T,y,0) at each point in the image.

Similarly,
M(T;La~ (B(wo, R))) < CL(p(F))wn—iR™

where p(F) is the image of the fiber F in R? (F is a submanifold of E, = R¥), maximized over all
p € O*(E,n,i). This inequality follows since the image of the projection of 7' is contained in the
image of F' x B(xg, R).

For precisely the same reasons, with the same constants,
M((h)(Tm (B(zo, AR))) < CLUp(F))wn—iR",

since the factor of A coming from the stretch simply expands the image of each projection until
it again is contained within the image of F' x B(xzg, R). The conclusion of this argument is the
following proposition:

Proposition 9. M((hy)x(TL7= (B(x0,AR)))) is bounded, independently of \. Thus, given a
sequence Ay, | 0, a subsequence of (hy,,)4(TLa~ (B(zo, \mR))) converges to a rectifiable section
TO mn F(B(CC(),R) X F)

Proof. Set T™F := (hy, )4(TL7" (B(x0, \mR))). Then, by taking a diagonal subsequence, for
each j € Z there is a current TV € T'(B(zg, j) x F) so that (ha, )2 (TL7 Y (B(20, Amj))) — T7 and
TI LB(mO, ) x F =T whenever j > [, so that there is a current 7% on R" x F which restricts to
each of these TY. O

We now specialize to the case of an S” !-bundle over a compact n-manifold M.

Proposition 10. Let B — M be an (n—1)-sphere bundle over a compact n-manifold M. Let T be a
good mass-minimizing rectifiable section as before. Assume that xo € M is a pole point of T so that
the Hausdor{f dimension of the pole is (n—1), that is, that the projection map ¢, : ST~V (r)x §7=1 —
S™=1 inducing a Crofton projection (¢,)x(TLS™D(r) x S*=1) € R*1(S"1), has limit having
positive (n — 1)-dimensional mass A for some subsequence of the sequence r,, = A\ R. Then the
current TV of Proposition (9) will be an h-cone.
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Proof. Since each T minimizes the scaled and stretched functional
VI(8) == V(13 )4 ()] (A RM((@x,m)(TLS" (34 R) x ")) |
T will minimize the limiting functional
Vo(SLLB™(x0, R) x ™™ 1) = limV/(SLB"(x,R) x S™1)
= M(S,_1l_B"(xo,R) x ™71,

where S,_1 := Z\a|:1 Sap is that part of the current S which has (n — 1) vertical components,

one horizontal component. The stretched functionals V7, as j — oo, magnify the terms with more
vertical components by the effect of (h;jl)#, and under the assumption that the pole at zg has

Hausdorff dimension (n — 1) that highest-order term will dominate all others in the normalized

limit. This reduces to
/ H UA(nil)H d ’
B(zo,R)

if S is a smooth graph S = graph(u). Note also that M"1(S,_|_dB™(xo,R) x S" 1) is the
(n — 1)-dimensional mass of the projection (¢r)4x(T°L.S""1(R) x S"1). Since T° minimizes, for
any R

Vo(T°LLB™(xo, R) x S"™1) < Vo(C(T°LOB"(zo, R) x S" 1))
= RM"YT?_,|_0B"(x¢, R) x S™ 1)
_ RMn—l ((gbR)#(TOLS”_l(R) « Sn—l)) ’

where C() denotes the h-cone over the boundary Tpl_8B"™(zg, R) x S"~!). On the other hand, by
slicing

%VO(TOLB"(@"O,R) x S > M YT LB (x, R) x S"7Y)
= M ((@R)4(TLS"H(R) x 577,
so that
d Vo(T°L_B"(xg, R) x 8™~ 1)
dR R
ya (VO(TOLB”(azo, R) x S”‘1)> R — Vo(T°L_B™ (20, R) x §™ 1)
- R
| oM ((0r)4(TOLS""L(R) x §"71)) R = Vo(T°LB"(z, R) x 5"1)
> 0, f

and so Vo(T°|_B™(z¢, R) x S"1)/R is an increasing function of R. However, since T? is invariant at
least under the sequence of stretches by hy, the projected mass M" ! ((qﬁR)#(TOLS"*l(R) X S"*1)>
must be the same for R = \; Ry, so that the values of M"™1 ((qﬁR)#(TOLS"*l(R) X S"*1)> repeat
over the intervals [\;11Ro, \j Ro] and the increasing function Vo(T°L_B™ (20, R) x S"~)/R satisfies

Vo(T°L_B"(xg, R) x S"1)
R

< MY (RTS8 (R) x 577

Vo(T°LB" (20, R) x §"1)/R < inf (M”*l ((qﬁR)#(TOLS"*l(R) X SH))) .
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However, since
Vo(T*L B™ (2o, R) x S"™1) > /0 e ((6)4(@L8" () x 5%)) dr
> Rinf (MH ((¢R)#(T0Ls"*1(3) x STH))) ,

all of these inequalities must be equalities, and necessarily M™~! ((qﬁR)#(TOLS"*l(R) X S”fl))
must be constant. Moreover,

Vo(T°L_B™(z0, R) x 8™ 1) = Vo(C(T°LOB™(xo, R) x S™7 1)),

and since any change with respect to the radial direction (of positive measure) would introduce a
strict inequality in that integral, T°|_B"(zq, R) x S" ' = C(T°_0B™(xy, R) x " ') T%-almost
everywhere. Thus 7 is an h-cone. O

The degree of a rectifiable section C' € I:(S”_1 x S™71) is defined by
deg(C) = / AWgnr = / T (dVinr) = C(I(dVenr)),
1(C) c

which is clearly a weakly closed condition. If C' is the graph of a smooth map ¢ : S"~! — §n—1
then deg(C) = deg(¢), and in particular, if ¢ is the restriction of a smooth map ® : B" — §"~!
to the boundary, then deg(C) = 0. By taking transfinite limits, if C' arises from the h-cone of a
strongly rectifiable section S € I'(B™ x S" 1), deg(C) = 0 since C is a weak limit of degree-zero
currents.

Definition 11. The degree of a pole point xy € M™ of a rectifiable section S € I'(B), where B
is an S"~L-bundle over M, deg(S, o), is the degree of the restriction of an h-cone v of S to the
boundary | S"~1(r) x S7~1.

Theorem 12. If B is an (n — 1)-sphere bundle over a compact n-manifold M, and if T € T'(B) is
a smooth graph except on a finite set of fibers 7=1(x;), so that the degree of each singular fiber is 0
and so that there is an h-cone at each fiber, then T € T'(B).

Proof. The only part of this statement requiring proof is that, in a neighborhood of each singular
fiber, the current is a limit of smooth currents. Certainly, if the degree of any of the singular
fibers is nonzero it cannot be in I'(B). If the degree is 0, however, since the graph is smooth
within the boundary spheres S"~1(r) x S"~' of B ' (B(xo,7)) = B(xg,r) x 8"~ !, the h-cone
is a cone over a current S € I'(S"~1(1) x S"71), in fact, S is the limit of the smooth sequence of
stretches of T|_S™~1(r) x $"~!. Since the degree of the singularity is 0, each graph T|_S"~'(r) x
S"=1 is (smoothly) homotopic to the constant map, mapping S !(r) to po € S*~ L. If H(x,t) :
S"=1(r) x [0,1] — S™ ! is that homotopy, then the graph G(y) : B(x,r) — S" ! defined by
G(y) = H(ry/ly|,1 — |y|/r) will be a smoothable graph which can be extended to a section of B
agreeing with 7" outside of this neighborhood. Clearly, given a sequence r; — 0, the maps

T Gr,, d(zo,x) <
o T7 d(q:va) > T

will be a sequence of currents converging weakly to 7', which are smooth in a neighborhood of
the pole point xg. Since there are finitely many singular points of T' by hypothesis, iterating this
construction will generate a sequence of smooth currents converging to 7. n
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4. RECTIFIABLE FOLIATIONS, RECTIFIABLE SECTIONS.

Consider now the case where B is the subbundle T} (M) of unit vectors in Ty (M). The connection
used to define the metric on Ty (M) restricts to an associated connection on T7(M), since the
connection is a metric connection, and defines a metric on T3 (M) as before.

Rectifiable 1-dimensional foliations on M are rectifiable sections of Ty (M) whose support lies within
T (M). As above, this condition will be weakly closed, so that the Federer closure and compactness
theorems hold.

Theorem 13. |7, 6] For any homology class of sections in f(Tl(M)), there is a mass-minimizing
rectifiable foliation F with support which is the Gauss map of a C' graph over an open, dense subset

of M.

The regular points of a rectifiable foliation S correspond to points where the Gauss map is contin-
uous, and singularities, or pole points, are points x € M where the Gauss map is discontinuous.
Equivalently, pole points are those 2 € M for which the set Supp(S)N7~!(z) consists of more than
one point. Points of Supp(S) lying over pole points are called pole elements.

4.1. The degree of a pole point. Let S be a mass-minimizing rectifiable section of T1(M?). By
[8], there is such a minimizer with only a finite number of pole points, each of which contains the
entire fiber in the support of S. Note that, in[8], the results need to be modified to indicate that [6]
does not show that any minimizer has the required smoothness, only that there is one minimizer
with the claimed partial regularity. Assume that .S is such a minimizer. The question of regularity
of a mass-minimizing section of Ty (M?) becomes whether such a pole point can exist.

If x is an isolated pole point of S € I'(Ty(M™)), by Proposition (10) there is an h-cone centered
at xo. By Theorem (12), S € I'(T1(M™)). In addition, the h-cone at xq is a rectifiable section
Y € T(B™ x 8"1), when restricted to a ball of radius 1 in the base. Slicing the h-cone v by a
cylinder of radius r generates a rectifiable current C in S"~1(r) x S7~1 = §7=1x §n~1 for almost any
r by slicing theory. Since ¢ is an h-cone, however, C' is independent of r, thus the slice is rectifiable
for all r, and so is in T'(S™~1 x §"71) as a bundle over the first factor. The key to existence of such
a singularity is the degree of the current C.

Since S has no interior boundary, and by [8] the support of S contains all of 771 (z), the image I(C)
of C, defined as the push-forward image (II2)4(C), for Iy : "~ x §"~1 — S™~! the projection
onto the second factor (the fiber), must have support the entire sphere.

We now return to the claim in Section 2 that not all weak rectifiable sections are strong rectifiable
sections.

Proposition 14. T'(T}(52)) # T(T1(52)).

Proof. Since there are no continuous sections of T (S?), that is, I'(T1(S?)) = 0, it suffices to show
that f(Tl(,SQ)) # 0. Given a point p € S?, and v € T1(S?,p), translate v parallel to itself along
longitudes to —p. The rectifiable section generated by this procedure will have a singular point at
—p, with the entire fiber of the sphere bundle in the support over —p. Since there is no boundary
and it projects to 1[S2] on S2\{—p}, it is an element of ['(T}(S2)). O

Remark 15. Of course, this current is an element of T'(7T,(S?)), and is the limit of a sequence
of smooth vector fields, each of which has a zero of degree 2 at —p, with length 1 outside of
neighborhoods of —p. It should also be noted that this topological obstruction is not the only way
that it can be possible for I'(B) # I'(B) for B an (n — 1)-sphere bundle on an n-manifold. Since the
degree of an isolated singularity is local, it follows that any isolated singularities of T' € T'(B) will
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have degree 0. But even on a sphere bundle B with global smooth sections, it is easy to construct
singular sections with two isolated singularities, one of degree 2 and the other of degree -2. Such
singular sections are clearly in I'(B)\I'(B).

5. NON-EXISTENCE OF ISOLATED SINGULARITIES

Now that we have shown that an isolated pole of a volume-minimizing section S of T3 (M) necessarily
stretches to an energy-minimizing section Sy for the limiting volume ), we proceed to show that it
cannot exist if the degree of the pole is 0. As before, set Sy € Tr(B(0,7) x S™1) to be an h-cone
of S, and set C' := Syl_5""1 x §"~! (r may be assumed to be larger than 1).

Theorem 16. If S is a volume-minimizing rectifiable section of Th (M) which is continuous over

an open, dense subset of M, then S cannot have a degree-zero isolated pole point xo, with supp(S)N
-1 B |

T (o) (o).

Proof. Let S be a mass-minimizing section which is continuous over an open, dense subset, as
guaranteed by [6], as discussed above. Assume that S has a degree-zero isolated singularity xg,
with the entire fiber contained in the support of S. There is a h-cone Sy of S at zg by §3. The
current C' = Spl_S""1(r) x S"~! has degree 0, as in §4.1, and so there is a rectifiable current
F so that OF = C — graph(constant) in S"~! x S"~!. In fact, the h-cone Sy can be used to
construct such a current Fy which is a “rectifiable homotopy”, that is, which extends to a rectifiable
section on (S"7! x I) x S" 'as an n-dimensional current with OF = C' x 0 — S$?"~! x {pt} x 1.
For each 7 in a sequence S; € f(B(xo,l) x S™~1) converging to the h-cone Sy, and for each r,
Sil_0B(z,r) x 8" 1 = S;(r)_8""! x S is a smooth graph of degree 0, so there is a rectifiable
current “fence” Fj(r) of dimension n so that F;(r) = S;(r)_S" ! x S — graph(constant)|_S"~1 x S.
Since S; — Sy, which is a cone, Fj(r) can be chosen with bounded mass, so there is a convergent
subsequence with limit Fy(r). Since Sy is an h-cone, it may be assumed that Fo(r) = (hy)x(Fo(1)).
The current

S, := Sol_B(z0, R)\B(xo,7) x S"~' 4 Fy(r) + graph(constant)|_B(zo,)

has the same boundary as Syl B (o, R). However, S | B(xo, R) minimizes the limiting functional
Vo, s0, independent of r, Vy(S,) > Vo(Sp). But,

Vo(Sr) = Wo (SOLB(QJO,R)\B(:CO,T) x 8"t 4 Fy(r) + graph(constant)LB(:co,r)>

VA (SOLB(xO,R)\B(xO,r) x sn—l) Vo (Bo(r)

since Vy(graph(constant)) = 0. In addition, Vo (Fo(r)) = A is independent of radius since Vo (Fp(r))
is the mass of the image of F(r) under the projection onto S"~!. However,

Vo(SoLB(wo, R)) = Vo (SoL- B(wo, R)\B(xo,7) x §"~") = Br
since Sp is an h-cone. The constants A and B do not depend upon R, except for the limitation
that r < R. Clearly, for R sufficiently large Vo(Sol_B(xo, R)) — Vo(S,) = Br — A will eventually be
positive for some r large enough, contradicting the fact that Sy | B (zo, R) minimizes Vy there. O

Corollary 17. If M is a compact 3-manifold, then there is a volume-minimizing one-dimensional
foliation of class C'.

Proof. By [8], there is a volume-minimizing rectifiable section of 77 (M) with only isolated singular
points, for which the support of each contains the entire fiber. Such isolated poles cannot exist by
the theorem, so there is a rectifiable section with no poles, so that the section is continuous on all
of M. Since that section is the tangent field of the foliation, the foliation is of class C*. O
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Remark 18. Sharon Pedersen, in [12|, defined, for each n > 1, a rectifiable section P, of Ty (S?"*1),
defined by parallel translation of a unit vector v € T}(S?"*1 z) along meridians to —z. This is a
rectifiable foliation and a minimal submanifold except over a single point, and was shown to have,
for n > 1, much smaller volume than the foliations defined by the standard Hopf fibrations. She
conjectured that this current might minimize volume amongst rectifiable sections of T7(S?"*1), but
this is not the case as shown below.

Corollary 19. The rectifiable sections P, of T1(S**1) are not volume-minimizing rectifiable foli-
ations.

Proof. The singularity at —z of such a foliation is precisely the kind shown to not exist by Theorem
(16). d
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