
D A V I D  L. J O H N S O N  A N D  A. M. N A V E I R A  

A T O P O L O G I C A L  O B S T R U C T I O N  TO T H E  

G E O D E S I B I L I T Y  O F  A F O L I A T I O N  O F  

O D D  D I M E N S I O N  

ABSTRACT. Let M be a compact Riemannian manifold of dimension n, and let ~ be a smooth 
foliation on M. A topological obstruction is obtained, similar to results of R. Bott and J. 
Pasternack, to the existence of a metric on M for which .~- is totally geodesic. In this case, 
necessarily that portion of the Pontryagin algebra of the subbundle .~ must vanish in degree 
n if .N is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and 
Pasternack are given. 
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0. I N T R O D U C T I O N  

I f ~  is a codimension-k distribution on a compact smooth manifold M, there 
is a well-known topological obstruction, due to R. Bott, to the integrability 
of ~ ;  the Pontryagin algebra of T,(M)/~ must vanish in degrees greater 
than 2k [11. This result was greatly improved by J. Pasternack in his thesis 
under the additional assumption that the metric on M is fiberlike with respect 
to the foliation ~ [7]. In that case, the characteristic algebra of T,(M)/~ 
must vanish in degrees greater than k. This article gives a simple proof of 
these facts, using tensors similar to those introduced by B. O'Neill [6] (cf., 
[5]). Also, there is a similar obstruction theorem derived in the case where 

is totally geodesic and of odd dimension. However, in this case the obstruc- 
tion is in the characteristic algebra of the subbundle ~ itself; if M is 
n-dimensional, the characteristic algebra of ~ must vanish in degree n. 

1. P R E L I M I N A R I E S  

Let M be, as above, a smooth, compact Riemannian n-manifold. Let Y be a 
foliation on M of codimension k. Denote also by ~ the associated distribu- 
tion and the orthogonal projection onto this distribution. Similarly, if 
Yg = ~ "  is the orthogonal distribution, denote by ~f~ the orthogonal projec- 
tion, and, if 24 ~ is integrable, denote the resulting foliation also by 240. Vectors 
in ,iF (resp., ~ )  will be called horizontal (resp., vertical). As in [5] and [-6], 
define tensors T and A on M by, for all vector fields E, F~Y{'(M), 

TeF = .JFV~eJ~F + Y V ~ e ~ F ,  

A~F = .~ffV ~ E ~  F + ~ V  ~eOet°F. 

As in [-5], it is easily seen that ~ is totally geodesic if and only if T = 0, 
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and that the metric is fiberlike (i.e., locally there are Riemannian submersions 
defining the foliation) if and only if A x Y = - A y X  for all X, Y ~ F ( ~ ) .  

The properties of the tensors A and T may equivalently be given in terms 
of a single tensor ~ ,  where ~ is the automorphism N : T,(M) ~ T,(M) given 
by N = ~" - .~. In a forthcoming article the second author will classify the 
various geometric almost-product and foliated structures defined naturally 
in terms of this automorphism, analogously to the work of A. Gray and 
L. M. Hervella o n  almost-complex structures [-4]. At present there is the 
following partial classification. 

P R O P O S I T I O N  (1.1) 
(a) .~ is parallel if and only if M is locally isometric to a Riemannian product. 
(b) Vv(~ ) = 0 for V~F(~-) if and only if ~ is totally geodesic. 
(c) For X, Y~FOef), V(~)x Y + V(~)yX = 0 if and only if the metric is 

fiberlike. 
(d) For X, Y ~ F(.X~), V(~)x y - V(~)y X = 0 if and only if ~ is integrable. 
Proof A calculation verifies that 

V(~)E F = - 2 J  V~E ~ F  + 2)f~V~E ~,~ F - 2 ~ V ~ e  Jt~F 

+ 2~t~V~e~YF. 

By taking the various cases of E and F either vertical or horizontal it is clear 
that ~ is parallel if and only if both A and T vanish. In that case [5] shows 
that M is locally isometric to a Riemannian product, verifying part (a). The 
remaining portions of the Proposition follow from this formula for V(~) 
and [-5]. [ ]  

XeF(Yg) is basic if, for some local submersion fv:U---,  Rk defining 
~ l v ,  X isfv-related to a vector field 2 on Rk; that is,fv,(X ) = 2.  

P R O P O S I T I O N  (1.2) 
(a) I f  X is basic, and if V is vertical, then IX, V] is vertical. 
(b) I f  the metric is fiberlike, it is possible to choose X and Y basic (with arbi- 

trary horizontal values at a given point) so that V x Y is also vertical. 
Proof The first statement is trivial; since X is fv-related to X, and V is 

fv-related to zero, [X, V] is fv-related to [-2, 0] = 0. For the second, the 
definition of a fiberlike metric [-5] implies the existence on N~ of a metric for 
which fv  : U ---, Rk is a Riemannian submersion. In this case, if X and Y are 
basic, fv-related to )( and Y, respectively, then, for (7 the Riemannian 
covariant derivative on ~k, ~ V  x y isfv_related to ~z x ~" [-6]. Choosing vector 
fields )~, f so that VfY = 0 completes the proof. Note that, in the general 
case X and Y may be chosen with [-X, Y] vertical by a similar argument. []  

2. THEOREMS OF BOTT AND PASTERNACK 

On W, define a connection V by V~X = W V  E X - A x ~ E ,  for E ~ X(M) and 
X~F(~Vf). It is evident that C7 is a connection; ~' is a geometrically natural 
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choice of Bott's connection on T*(M)/~ ~_ ~ .  Unfortunately V is not, in 
general, symmetric. 

T H E O R E M  (2.1). I f  ~ is the curvature of V, ~( V, W) = 0 if both V and Ware 
vertical. 

Proof For X basic, 

~v x = ~ ( V v X  - v X v)  = ~ [ v ,  x ]  = 0, 

by Proposition (1.2). Then, 

fi(v, w ) x  = 9 v g w X  - ~ w g v  x - 9Ev, w~X = o 

due to the integrability of ~ .  

C O R O L L A R Y  (2.2) [Bott]. Char p ( ~ )  = 0 for p > 2k, where Char p (.2~) is 
that part of the real characteristic algebra (Pontryagin or Chern) of Yt ~ in 
degree p. 

Remark. In general, this is the Pontryagin algebra of ~ ,  and specifically 
does not include terms involving the Euler class, since the connection is not 
symmetric. In the case where 2/t' is complex, all appropriate Chern classes 
must vanish. 

Proof If .~p/2 is the space of all S ( k ,  ~)-invariant polynomials of degree 
p/2 (resp., ~E(k/2, C)-invariant polynomials), it is well-known [2] that Char p 
(-~) is generated by all P(~), for P e jp/2. As P(fi) is tensorial, it suffices to 
compute P(~) (A 1 ,... ,Ap) where each Aj is chosen to be either vertical or 
horizontal. However, ifp > 2k each monomial must possess a component of 
~(A i, A j) with both A i and Aj vertical. []  

In the case where the metric is fiberlike the connection V will be symmetric; 
an exactly analogous argument yields Pasternack's theorem. 

P R O P O S I T I O N  (2.3). I f  the metric is fiberlike, V is symmetric. 
Proof The condition that 

<VE X, Y> + <X,V~ Y> =E<X, Y> 

is clearly tensorial, thus it suffices to consider only the case where X and Y are 
basic. IfE is vertical, Proposition (1.2) implies that the left-hand side vanishes. 
That the right-hand side is also zero may be found in [5]. If E is horizontal, 
taking E to be basic yields 

<~x, Y> + <x, ~Y> = <v~x, Y> + <x, v~Y> 

by [6]. As V is symmetric the proposition is verified, since E< X, Y> = 
E< X, Y > at corresponding points. 

T H E O R E M  (2.4). I f  the metric is fiberlike, ~(X, V) = 0 for X horizontal, 
V vertical. 

Proof Let Y be chosen to be basic and so that V x Y s F ( Y )  by Proposition 
(1.2). X, as usual, will be assumed to be basic. Then, V x Y = YgV x Y = 0 as 
well as Vv Y = 0. As [X, V] is vertical, evidently ~(X, V) Y = 0. []  
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COROLLARY (2.5)[Pasternack]. I f  the metric on M is fiberlike, 
Char p (~f) = 0 for p > k. 

Remark. Here the appropriate terms involving the Euler class may be 
included; that is, if 2Zg is orientable, consider all so(k)-invariant polynomials 
of degree p/2. 

Proof In this case it is necessary that each monomial in P(~)(A~ ..... Ap) 
has a component of f~(A~, A j) where at least one of A,. and A~ is vertical. [] 

3. T O T A L L Y  G E O D E S I C  F O L I A T I O N S  

A foliation Y is totally geodesic if each leaf is a totally geodesic submanifold 
of M. In [-5] the first author and L. Whitt found a strong obstruction to the 
existence of a totally geodesic foliation ~- of codimension one under the 
assumption that ~ has at least one closed leaf; in that case M must fiber over 
a circle. In contrast, H. Gluck has shown that there is no obstruction to the 
existence of a totally geodesic foliation of dimension one on a simply- 
connected manifold of odd dimension. It thus seems reasonable to suspect 
that the topological obstructions to geodesibility of a foliation ~-, above the 
integrability obstructions, should lie in the bundle ~ rather than the normal 
bundle. 

Define a connection V on ~ by VE V = ,~-V E V. V is clearly a symmetric 
connection. Note that, since ~ is totally geodesic, T = 0. More generally it 
would be desirable, analogously to Bott's connection, to consider NV~ V - 
TvNgE; however, the nonintegrability of ~ prevents any transparent con- 
sequences in general. 

PROPOSITION (3.1). I f  X,,~ T,(M, m) is horizontal, and Ym ~ T,(M, m) is 
vertical, there are extensions XeF(JF)  and YEF(~) so that V x V = O. 

Proof. Choose X to be basic. Let ~ be any integral curve of 2 on Rk, where 
f v : U  ___, Nk is a chosen local submersion with fu,(X)= 2. Let 22 =ft~ i(~). 

D 

LEMMA (3.2). I fZ  is given the induced metric, the restriction ~ of ~ to Z is 
totally geodesic. Also, note that the orthogonal distribution Jt ~ is integrable. 
The metric on E is fiberlike with respect to the foliation )f~. 

Proof Since the Riemannian covariant derivative V ~ on Y is given by the 
orthogonal projection Hr,~V, the first statement is trivial. That the metric on 
I2 is fiberlike with respect to ~f  follows from the duality between fiberlike 
metrics and totally geodesic foliations described in [5]. [] 

Now let gz:12--' N be a local submersion defining 24 ~. As the induced 
metric on I2 is fiberlike, there is a metric on R so that g~ is a Riemannian 
submersion. Choose V to be basic with respect to gz. Proposition (1.2) then 
implies that [V,X]eF(H~) .  However, as V is vertical and ~- is totally 
geodesic, V v X ~ F ( H  ~) as well, so that V x V~F(o~ ~) ~ F(Of') (V may be 
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extended to a vector field on U using a smooth family of g~'s for the various 
integral curves of X). Thus, Vv X = O. [] 

T H E O R E M  (3.3). I f  ~ is totally geodesic, and if ~ is the curvature off?, 
then (~( V, X) = 0 if V is vertical and X is horizontal. 

Proof Extend X to be basic, and, as in Proposition (3.1), choose V to be 
Yg~-basic and so that Vx V = 0. Let W be another ~ - b a s i c  vector field, for 
which, using Proposition (1.2), V v W is in F(~uf). As ~ is totally geodesic, 
V v W = 0, thus Vv W = 0. The proof of Proposition (3.1) implies that ~7 x W = 0 
as well, since W is ~Z-basic. Also, l-X, V] = 0 as l-X, V] must be both 
horizontal and vertical, applying Proposition (1.2) twice. Thus 
fi(S, V)W = O. [] 

C O R O L L A R Y  (3.4). I f  J is totally geodesic and if d im( i f )  is odd, 
Char"@ ~ )  = 0, where n = dim (m). 

Proof If P is any o ( n -  k)-invariant polynomial of degree n/2, consider 
P(~) (A 1 ..... A )  where A i is either vertical or horizontal. Each monomial 
must possess a component of ~(A i, A j) where one is vertical and the other is 
horizontal, as dim (~ )  is odd, thus each monomial must vanish. []  

4. A N  E X A M P L E  

Let M be a compact 8-dimensional orientable manifold with z(M) = 0 but 
Hirzebruch signature nonzero. Thurston 1-8] has shown that there is a folia- 
tion ~ on M of codimension one. However, 

P R O P O S I T I O N  (4.1). No codimension-one foliation ~ on M is geodesible. 
Proof Let .gff = ~± .  As T,(M) ~ _ ~ O~- ,  the total Pontryagin class 

p,(M) is given by p,(M)= p,(2/g)p,(~). But ~g is one-dimensional, so that 
p,(Jg) = 1, hence pz(M) = 0 and pl(M) = Pl (~)" By the Hirzebruch signature 
theorem, the signature o-(M) of M satisfies a ( m ) =  k2g(7pz(M)- pl(m)  2) = 

- ~ P l  (~)2, which is nonzero by assumption. Corollary (3.4) then implies 
that Y cannot be totally geodesic. []  
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