A TOPOLOGICAL OBSTRUCTION TO THE GEODESIBILITY OF A FOLIATION OF ODD DIMENSION

ABSTRACT. Let *M* be a compact Riemannian manifold of dimension *n*, and let \mathscr{F} be a smooth foliation on *M*. A topological obstruction is obtained, similar to results of R. Bott and J. Pasternack, to the existence of a metric on *M* for which \mathscr{F} is totally geodesic. In this case, necessarily that portion of the Pontryagin algebra of the subbundle \mathscr{F} must vanish in degree *n* if \mathscr{F} is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and Pasternack are given.

AMS(MOS) subject classifications (1970): Primary 57D30; Secondary 53B25, 53C20.

Key words and phrases: Foliations, totally geodesic foliations, integrability obstructions, geodesibility.

0. INTRODUCTION

If \mathscr{F} is a codimension-k distribution on a compact smooth manifold M, there is a well-known topological obstruction, due to R. Bott, to the integrability of \mathscr{F} ; the Pontryagin algebra of $T_*(M)/\mathscr{F}$ must vanish in degrees greater than 2k [1]. This result was greatly improved by J. Pasternack in his thesis under the additional assumption that the metric on M is fiberlike with respect to the foliation \mathscr{F} [7]. In that case, the characteristic algebra of $T_*(M)/\mathscr{F}$ must vanish in degrees greater than k. This article gives a simple proof of these facts, using tensors similar to those introduced by B. O'Neill [6] (cf., [5]). Also, there is a similar obstruction theorem derived in the case where \mathscr{F} is totally geodesic and of odd dimension. However, in this case the obstruction is in the characteristic algebra of the subbundle \mathscr{F} itself; if M is *n*-dimensional, the characteristic algebra of \mathscr{F} must vanish in degree n.

1. PRELIMINARIES

Let *M* be, as above, a smooth, compact Riemannian *n*-manifold. Let \mathscr{F} be a foliation on *M* of codimension *k*. Denote also by \mathscr{F} the associated distribution and the orthogonal projection onto this distribution. Similarly, if $\mathscr{H} = \mathscr{F}^{\perp}$ is the orthogonal distribution, denote by \mathscr{H} the orthogonal projection, and, if \mathscr{H} is integrable, denote the resulting foliation also by \mathscr{H} . Vectors in \mathscr{H} (resp., \mathscr{H}) will be called *horizontal* (resp., *vertical*). As in [5] and [6], define tensors *T* and *A* on *M* by, for all vector fields *E*, $F \in \mathscr{X}(M)$,

$$\begin{split} T_E F &= \mathscr{H} \nabla_{\mathscr{F} E} \mathscr{F} F + \mathscr{F} \nabla_{\mathscr{F} E} \mathscr{H} F, \\ A_E F &= \mathscr{H} \nabla_{\mathscr{H} E} \mathscr{F} F + \mathscr{F} \nabla_{\mathscr{H} E} \mathscr{H} F. \end{split}$$

As in [5], it is easily seen that \mathcal{F} is totally geodesic if and only if T = 0,

and that the metric is fiberlike (i.e., locally there are Riemannian submersions defining the foliation) if and only if $A_X Y = -A_X X$ for all $X, Y \in \Gamma(\mathcal{H})$.

The properties of the tensors A and T may equivalently be given in terms of a single tensor \mathcal{P} , where \mathcal{P} is the automorphism $\mathcal{P}: T_*(M) \to T_*(M)$ given by $\mathcal{P} = \mathcal{F} - \mathcal{H}$. In a forthcoming article the second author will classify the various geometric almost-product and foliated structures defined naturally in terms of this automorphism, analogously to the work of A. Gray and L. M. Hervella on almost-complex structures [4]. At present there is the following partial classification.

PROPOSITION (1.1)

- (a) \mathcal{P} is parallel if and only if M is locally isometric to a Riemannian product.
- (b) $\nabla_{V}(\mathcal{P}) = 0$ for $V \in \Gamma(\mathcal{F})$ if and only if \mathcal{F} is totally geodesic.
- (c) For $X, Y \in \Gamma(\mathcal{H}), \nabla(\mathcal{P})_X Y + \nabla(\mathcal{P})_Y X = 0$ if and only if the metric is fiberlike.

(d) For $X, Y \in \Gamma(\mathcal{H}), \nabla(\mathcal{P})_X Y - \nabla(\mathcal{P})_Y X = 0$ if and only if \mathcal{H} is integrable. *Proof.* A calculation verifies that

$$\nabla(\mathscr{P})_{E}F = -2\mathscr{F}\nabla_{\mathscr{F}E}\mathscr{H}F + 2\mathscr{H}\nabla_{\mathscr{F}E}\mathscr{F}F - 2\mathscr{F}\nabla_{\mathscr{H}E}\mathscr{H}F \\ + 2\mathscr{H}\nabla_{\mathscr{H}E}\mathscr{F}F.$$

By taking the various cases of E and F either vertical or horizontal it is clear that \mathcal{P} is parallel if and only if both A and T vanish. In that case [5] shows that M is locally isometric to a Riemannian product, verifying part (a). The remaining portions of the Proposition follow from this formula for $\nabla(\mathcal{P})$ and [5].

 $X \in \Gamma(\mathscr{H})$ is basic if, for some local submersion $f_U : U \to \mathbb{R}^k$ defining $\mathscr{F}|_U, X$ is f_U -related to a vector field \overline{X} on \mathbb{R}^k ; that is, $f_U * (X) = \overline{X}$.

PROPOSITION (1.2)

- (a) If X is basic, and if V is vertical, then [X, V] is vertical.
- (b) If the metric is fiberlike, it is possible to choose X and Y basic (with arbitrary horizontal values at a given point) so that $\nabla_X Y$ is also vertical.

Proof. The first statement is trivial; since X is f_U -related to \overline{X} , and V is f_U -related to zero, [X, V] is f_U -related to $[\overline{X}, 0] = 0$. For the second, the definition of a fiberlike metric [5] implies the existence on \mathbb{R}^k of a metric for which $f_U: U \to \mathbb{R}^k$ is a Riemannian submersion. In this case, if X and Y are basic, f_U -related to \overline{X} and \overline{Y} , respectively, then, for $\overline{\nabla}$ the Riemannian covariant derivative on \mathbb{R}^k , $\mathscr{H} \nabla_X Y$ is f_U -related to $\overline{\nabla}_X \overline{Y}$ [6]. Choosing vector fields $\overline{X}, \overline{Y}$ so that $\overline{\nabla}_{\overline{X}} \overline{Y} = 0$ completes the proof. Note that, in the general case X and Y may be chosen with [X, Y] vertical by a similar argument.

2. Theorems of bott and pasternack

On \mathscr{H} , define a connection $\widetilde{\nabla}$ by $\widetilde{\nabla}_E X = \mathscr{H} \nabla_E X - A_X \mathscr{F} E$, for $E \in \mathscr{X}(M)$ and $X \in \Gamma(\mathscr{H})$. It is evident that $\widetilde{\nabla}$ is a connection; $\widetilde{\nabla}$ is a geometrically natural

choice of Bott's connection on $T^*(M)/\mathscr{F} \simeq \mathscr{H}$. Unfortunately $\tilde{\nabla}$ is not, in general, symmetric.

THEOREM (2.1). If $\tilde{\Omega}$ is the curvature of $\tilde{\nabla}$, $\tilde{\Omega}(V, W) = 0$ if both V and W are vertical.

Proof. For X basic,

$$\widetilde{\nabla}_{V}X = \mathscr{H}(\nabla_{V}X - \nabla_{X}V) = \mathscr{H}[V, X] = 0,$$

by Proposition (1.2). Then,

$$\widetilde{\Omega}(V,W)X = \widetilde{\nabla}_{v}\widetilde{\nabla}_{W}X - \widetilde{\nabla}_{W}\widetilde{\nabla}_{V}X - \widetilde{\nabla}_{[V,W]}X = 0$$

due to the integrability of \mathcal{F} .

COROLLARY (2.2) [Bott]. Char^{*p*} (\mathscr{H}) = 0 for p > 2k, where Char^{*p*} (\mathscr{H}) is that part of the real characteristic algebra (Pontryagin or Chern) of \mathscr{H} in degree *p*.

Remark. In general, this is the Pontryagin algebra of \mathcal{H} , and specifically does not include terms involving the Euler class, since the connection is not symmetric. In the case where \mathcal{H} is complex, all appropriate Chern classes must vanish.

Proof. If $\mathscr{I}^{p/2}$ is the space of all $\mathscr{A}(k, \mathbb{R})$ -invariant polynomials of degree p/2 (resp., $\mathscr{A}(k/2, \mathbb{C})$ -invariant polynomials), it is well-known [2] that $\operatorname{Char}^{p}(\mathscr{H})$ is generated by all $P(\tilde{\Omega})$, for $P \in \mathscr{I}^{p/2}$. As $P(\tilde{\Omega})$ is tensorial, it suffices to compute $P(\tilde{\Omega})(A_1, \ldots, A_p)$ where each A_j is chosen to be either vertical or horizontal. However, if p > 2k each monomial must possess a component of $\tilde{\Omega}(A_i, A_j)$ with both A_i and A_j vertical.

In the case where the metric is fiberlike the connection $\tilde{\nabla}$ will be symmetric; an exactly analogous argument yields Pasternack's theorem.

PROPOSITION (2.3). If the metric is fiberlike, $\tilde{\nabla}$ is symmetric.

Proof. The condition that

 $\langle \tilde{\nabla}_E X, Y \rangle + \langle X, \tilde{\nabla}_E Y \rangle = E \langle X, Y \rangle$

is clearly tensorial, thus it suffices to consider only the case where X and Y are basic. If E is vertical, Proposition (1.2) implies that the left-hand side vanishes. That the right-hand side is also zero may be found in [5]. If E is horizontal, taking E to be basic yields

$$\big<\tilde{\nabla}_{\!_E}\!X,\,Y\,\big>+\big< X,\tilde{\nabla}_{\!_E}\!Y\,\big>=\big<\bar{\nabla}_{\!_{\!\!E}}\!\bar{X},\,\bar{Y}\,\big>+\big<\bar{X},\bar{\nabla}_{\!_E}\bar{Y}\,\big>$$

by [6]. As $\overline{\nabla}$ is symmetric the proposition is verified, since $E\langle X, Y \rangle = \overline{E}\langle \overline{X}, \overline{Y} \rangle$ at corresponding points.

THEOREM (2.4). If the metric is fiberlike, $\tilde{\Omega}(X, V) = 0$ for X horizontal, V vertical.

Proof. Let Y be chosen to be basic and so that $\nabla_X Y \in \Gamma(\mathscr{F})$ by Proposition (1.2). X, as usual, will be assumed to be basic. Then, $\tilde{\nabla}_X Y = \mathscr{H} \nabla_X Y = 0$ as well as $\tilde{\nabla}_V Y = 0$. As [X, V] is vertical, evidently $\tilde{\Omega}(X, V)Y = 0$.

COROLLARY (2.5) [Pasternack]. If the metric on M is fiberlike, $\operatorname{Char}^{p}(\mathcal{H}) = 0$ for p > k.

Remark. Here the appropriate terms involving the Euler class may be included; that is, if \mathscr{H} is orientable, consider all so(k)-invariant polynomials of degree p/2.

Proof. In this case it is necessary that each monomial in $P(\tilde{\Omega})(A_1, \dots, A_p)$ has a component of $\tilde{\Omega}(A_i, A_j)$ where at least one of A_i and A_j is vertical.

3. TOTALLY GEODESIC FOLIATIONS

A foliation \mathscr{F} is *totally geodesic* if each leaf is a totally geodesic submanifold of M. In [5] the first author and L. Whitt found a strong obstruction to the existence of a totally geodesic foliation \mathscr{F} of codimension one under the assumption that \mathscr{F} has at least one closed leaf; in that case M must fiber over a circle. In contrast, H. Gluck has shown that there is no obstruction to the existence of a totally geodesic foliation of dimension one on a simplyconnected manifold of odd dimension. It thus seems reasonable to suspect that the topological obstructions to geodesibility of a foliation \mathscr{F} , above the integrability obstructions, should lie in the bundle \mathscr{F} rather than the normal bundle.

Define a connection $\hat{\nabla}$ on \mathscr{F} by $\hat{\nabla}_E V = \mathscr{F} \nabla_E V$. $\hat{\nabla}$ is clearly a symmetric connection. Note that, since \mathscr{F} is totally geodesic, T = 0. More generally it would be desirable, analogously to Bott's connection, to consider $\mathscr{F} \nabla_E V - T_V \mathscr{H} E$; however, the nonintegrability of \mathscr{H} prevents any transparent consequences in general.

PROPOSITION (3.1). If $X_m \in T_*(M, m)$ is horizontal, and $Y_m \in T_*(M, m)$ is vertical, there are extensions $X \in \Gamma(\mathscr{H})$ and $Y \in \Gamma(\mathscr{F})$ so that $\hat{\nabla}_X V = 0$.

Proof. Choose X to be basic. Let $\bar{\gamma}$ be any integral curve of \bar{X} on \mathbb{R}^k , where $f_U: U \to \mathbb{R}^k$ is a chosen local submersion with $f_{U^*}(X) = \bar{X}$. Let $\Sigma = f_U^{-1}(\bar{\gamma})$.

LEMMA (3.2). If Σ is given the induced metric, the restriction \mathscr{F}^{Σ} of \mathscr{F} to Σ is totally geodesic. Also, note that the orthogonal distribution \mathscr{H}^{Σ} is integrable. The metric on Σ is fiberlike with respect to the foliation \mathscr{H}^{Σ} .

Proof. Since the Riemannian covariant derivative ∇^{Σ} on Σ is given by the orthogonal projection $\Pi_{T*\Sigma}\nabla$, the first statement is trivial. That the metric on Σ is fiberlike with respect to \mathscr{H} follows from the duality between fiberlike metrics and totally geodesic foliations described in [5].

Now let $g_{\Sigma}: \Sigma \to \mathbb{R}$ be a local submersion defining \mathscr{H} . As the induced metric on Σ is fiberlike, there is a metric on \mathbb{R} so that g_{Σ} is a Riemannian submersion. Choose V to be basic with respect to g_{Σ} . Proposition (1.2) then implies that $[V, X] \in \Gamma(\mathscr{H}^{\Sigma})$. However, as V is vertical and \mathscr{F} is totally geodesic, $\nabla_{V} X \in \Gamma(\mathscr{H}^{\Sigma})$ as well, so that $\nabla_{X} V \in \Gamma(\mathscr{H}^{\Sigma}) \subset \Gamma(\mathscr{H})$ (V may be

extended to a vector field on U using a smooth family of g_{Σ} 's for the various integral curves of \bar{X}). Thus, $\hat{\nabla}_{V} X = 0$.

THEOREM (3.3). If \mathscr{F} is totally geodesic, and if $\hat{\Omega}$ is the curvature of $\hat{\nabla}$, then $\hat{\Omega}(V, X) = 0$ if V is vertical and X is horizontal.

Proof. Extend X to be basic, and, as in Proposition (3.1), choose V to be \mathscr{H}^{Σ} -basic and so that $\hat{\nabla}_{X} V = 0$. Let W be another \mathscr{H}^{Σ} -basic vector field, for which, using Proposition (1.2), $\nabla_{V} W$ is in $\Gamma(\mathscr{H})$. As \mathscr{F} is totally geodesic, $\nabla_{V} W = 0$, thus $\hat{\nabla}_{V} W = 0$. The proof of Proposition (3.1) implies that $\hat{\nabla}_{X} W = 0$ as well, since W is \mathscr{H}^{Σ} -basic. Also, [X, V] = 0 as [X, V] must be both horizontal and vertical, applying Proposition (1.2) twice. Thus $\hat{\Omega}(X, V)W = 0$.

COROLLARY (3.4). If \mathscr{F} is totally geodesic and if dim(\mathscr{F}) is odd, Charⁿ(\mathscr{F}) = 0, where $n = \dim(M)$.

Proof. If P is any o(n-k)-invariant polynomial of degree n/2, consider $P(\hat{\Omega})(A_1,\ldots,A_n)$ where A_i is either vertical or horizontal. Each monomial must possess a component of $\hat{\Omega}(A_i, A_j)$ where one is vertical and the other is horizontal, as dim (\mathcal{F}) is odd, thus each monomial must vanish.

4. AN EXAMPLE

Let M be a compact 8-dimensional orientable manifold with $\chi(M) = 0$ but Hirzebruch signature nonzero. Thurston [8] has shown that there is a foliation \mathcal{F} on M of codimension one. However,

PROPOSITION (4.1). No codimension-one foliation \mathcal{F} on M is geodesible.

Proof. Let $\mathscr{H} = \mathscr{F}^{\perp}$. As $T_*(M) \simeq \mathscr{H} \oplus \mathscr{F}$, the total Pontryagin class $p_*(M)$ is given by $p_*(M) = p_*(\mathscr{H})p_*(\mathscr{F})$. But \mathscr{H} is one-dimensional, so that $p_*(\mathscr{H}) = 1$, hence $p_2(M) = 0$ and $p_1(M) = p_1(\mathscr{F})$. By the Hirzebruch signature theorem, the signature $\sigma(M)$ of M satisfies $\sigma(M) = \frac{1}{45}(7p_2(M) - p_1(M)^2) = -\frac{1}{45}p_1(\mathscr{F})^2$, which is nonzero by assumption. Corollary (3.4) then implies that \mathscr{F} cannot be totally geodesic.

REFERENCES

- 1. Bott, R.: Lectures on Characteristic Classes and Foliations, Lecture Notes in Math., vol. 279, Springer-Verlag, 1972, pp. 1–80.
- 2. Chern, S.-S. and Simons, J. : 'Characteristic Forms and Geometric Invariants', Ann. Math. 99 (1974), 48-69.
- 3. Gluck, H.: 'Can Space be Filled by Geodesics, and If So, How?' (to appear).
- 4. Gray. A. and Hervella, L. M.: 'The Sixteen Classes of Almost Hermitian Manifolds and their Linear Invariants, *Ann. Math. Pura Appl.* (to appear).
- 5. Johnson, D. L. and Whitt, L. B.: 'Totally Geodesic Foliations', J. Diff. Geo. (to appear).
- 6. O'Neill, B.: 'The Fundamental Equations of a Submersion', Michigan Math. J. 13 (1969), 459-469.

- 7. Pasternack, J.: 'Classifying Spaces for Riemannian Foliations, Differential Geometry', Proc. Symposia Pure Math. 27 (1975), 303-310.
- 8. Thurston, W. P.: 'Existence of Codimension-one Foliations', Ann. Math. 104 (1976), 249-268.

Authors' addresses

David L. Johnson, Department of Mathematics, Texas A & M University, *College Station* Texas 77843, U.S.A.

A. M. Naveira,
Departamento de Geometria y Topologia,
Facultad de Ciencias Matemáticas,
Universidad de Valencia,
Valencia,
Spain

(Received January 21, 1980)