
MOMENTS FOR THE PARABOLIC ANDERSON MODEL:

ON A RESULT BY HU AND NUALART

DANIEL CONUS

Abstract. We consider the parabolic Anderson model ∂tu = Lu + uẆ ,
where L is the generator of a Lévy process and Ẇ is a white noise in time,
possibly correlated in space. We present an alternate proof and an extension
to a result by Hu and Nualart ([17]) giving explicit expressions for moments of
the solution. We do not consider a Feynman-Kac representation, but rather
make a recursive use of Itô’s formula. Moments of solutions play a crucial
role in understanding physical properties of solutions, such as intermittency.

1. Introduction

We consider the spatially continuous form of the parabolic Anderson model,
namely the stochastic partial differential equation given by

∂u

∂t
(t, x) = Lu(t, x) + u(t, x)Ẇ (t, x), t > 0, x ∈ R

d, (1.1)

where L is the generator of a real-valued Lévy process (Xt)t≥0. The noise Ẇ (t, x) is
white in time and possibly correlated in space, with covariance function informally
given by

E[Ẇ (t, x)Ẇ (s, y)] = δ0(t− s)f(x− y),

where f is a (possibly generalized) non-negative symmetric function on R
d \ {0}.

We consider a non-random, bounded and measurable initial condition u0 : R
d → R.

By the work of Dalang [9] (see also [14] for Lévy process generators and [11]
for a general presentation of Walsh’s approach for SPDEs), it is well-known that
this equation admits a random-field solution {u(t, x) : t > 0, x ∈ R

d} such that
sup0≤t≤T supx∈Rd E[u(t, x)2] <∞, provided that

∫

R

µ(dξ)

1 + 2ReΨ(ξ)
<∞,

where Ψ(ξ) = E[eiξX1 ] is the Lévy exponent of X and µ(dξ) is the Fourier trans-
form of f , usually called the spectral measure of the noise.

Equation (1.1) arises in different contexts. It is the continuous form of the par-
abolic Anderson model studied by Carmona and Molchanov ([4]). We also would
like to mention the major role played by equation (1.1) in the study of the so-called
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KPZ equation of physics ([18]). The connection between the stochatic heat equa-
tion and the KPZ equation, via a Hopf-Cole transformation has been informally
known and studied in the past (see for instance [1], [2]) and has been recently
made formal by Hairer [16]. In particular, intermittency and chaos properties of
the solution to (1.1) are active topics of research. We refer to [7], [8], [14] for more
details about these properties.

The purpose of this paper is to obtain explicit expressions for the moments of the
solution u to (1.1). The study of moments of solutions to the parabolic Anderson
model has been the subject to an extensive literature, initiated by Carmona and
Molchanov [4]. They study (in the spatially discrete case) the asymptotic behavior
of the moments as t → ∞. In particular, they prove existence of the moment
Lyapunov exponents, namely

γ(p) := lim
t→∞

1

t
logE[|u(t, x)|p].

Existence and properties of these Lyapunov exponents play a major role in the
study of the intermittency of the solution. Physically, this corresponds to the
fact that the solution develops (as t→ ∞) very high peaks concentrated on small
islands. Mathematically, the solution is intermittent if

γ(1) <
γ(2)

2
< · · · < γ(p)

p
< · · · .

As a consequence, proving that a solution is intermittent requires a careful under-
standing of the moments of the solution and their behavior. A similar program
as the one of Carmona and Molchanov [4] has been developed for the spatially
continuous equation (1.1) by Foondun and Khoshnevisan [14].

More recently, the need for a careful understanding of moments of solutions to
(1.1) has appeared, not only in the study of intermittency, but also in the effort
to study intermittent-like behavior in finite time and chaotic properties of the so-
lution (see for instance [7], [8]). It has become needed to not only understand
the asymptotic behavior of the moments as t → ∞, but also for a finite time
t. Moreover, results in [7], [8] illustrate how different behaviors of the moments
E[|u(t, x)|p] as functions of p can lead to drastically different quantitative behav-
iors of the solution, typically as regards its largest values. These considerations
motivate the search for explicit expressions for moments.

Explicit results for moments have already been obtained in the particular case
where L = ∆ is the Laplacian; the generator of Brownian Motion and f = δ0
the Dirac measure in [2]. A similar formula has been developped in [17] in the
case where L = ∆ and the noise is fractional in time, white in space. Both [2]
and [17] use the Feynman-Kac representation of the solution to deduce a formula
for the moments. In this paper, we will follow a different approach and obtain
results through a direct computation based on an iterative use of Itô’s formula.
One motivation for the search of different methods to compute moments is, on
the one hand, the objective of extending existing results to more general operators
(Lévy generator rather than ∆) and noises that are not white in space, as we
are able to do in this paper. Such models are considered in [7], [8] and their
study exhibit properties that are different from the classical space-time white noise
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situation. Studying different operators and different noises helps to distinguish the
role played by the operator or the noise when it comes to understand the physical
behavior of the solution. The moments formulae of this paper are used in the
proofs of the results of [7, 8]. On another hand, we would eventually be interested
in handling equations where the multiplicative factor in front the noise, σ(u), is
not a linear function, in order to understand the role played by the nonlinerity
in intermittency. Methods using Feynman-Kac representations have no chance of
succeeeding in these situations, since such representations are not available. Some
bounds are provided in [7], but obtaining explicit expressions is subject to ongoing
research. We notice that in this paper we will only consider a noise that is white
in time. This is necessary since the methods of this paper are strongly based on
Itô’s formula and require the underlying process to be a (semi-)martingale.

Section 2 below is a short reminder about the Parabolic Anderson Model, ex-
istence, uniqueness and series representation of the solution. We also recall a few
results about Lévy processes. The moment formulae of Theorem 3.1 and its Corol-
lary 3.2 constitute the main results of this paper. They are stated and proved in
Section 3 in the case where the spatial covariance of the noise is a measurable
function. Section 4 is devoted to the case of space-time white noise (Theorem
4.1). Section 5 is devoted to the formal proofs of some technical results.

2. Parabolic Anderson model

In this section, we are going to remind a few known results about the para-
bolic Anderson model and Lévy processes in general. Let’s start by setting the
framework in which we are going to work.

We remind that L denotes the generator of a symmetric Lévy process (Xt)t≥0

on R
d. For instance, one can consider L = ∆, the Laplacian operator: it is the

generator of Brownian Motion (Bt)t≥0.
Let’s assume first that the spatial covariance of the noise is a measurable func-

tion f : R
d \ {0} → R+. We ask f to be locally integrable around 0. Let

D(Rd+1) be the space of C∞ functions with compact support on R
d+1. Then

W = {W (φ), φ ∈ D(Rd+1)} is a centered Gaussian noise with covariance func-
tional given by

E[W (φ)W (ψ)] =

∫ ∞

0

dt

∫

Rd

dx

∫

Rd

dy φ(t, x)f(x − y)ψ(t, y).

This noise can be extended to a worthy martingale measure in the sense of Walsh
(see [10] and [19] for details). Hence, by the theory of Walsh [19], extended by
Dalang [9], we can define stochastic integrals with respect to the noise W .

We notice that the covariance functional can be written as

E[W (φ)W (ψ)] =

∫ ∞

0

dt

∫

Rd

dx f(x)(φ(t, ·) ∗ ψ̃(t, ·))(x), (2.1)

where ∗ denotes spatial convolution and ψ̃(t, x) = ψ(t,−x) for all x ∈ R
d. Using

the representation (2.1), we can then define the noise W in the case where f is a
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finite measure, using

E[W (φ)W (ψ)] =

∫ ∞

0

dt

∫

Rd

f(dx) (φ(t, ·) ∗ ψ̃(t, ·))(x).

We will consider a random-field solution to (1.1), i.e. a jointly measurable
stochastic process (u(t, x))t≥0,x∈Rd such that

sup
0≤t≤T,x∈Rd

E[u(t, x)2] <∞,

for every fixed T > 0 and satsifying the mild-form equation

u(t, x) = (p̃t ∗ u0)(x) +
∫ t

0

∫

Rd

pt−s(y − x)u(s, y)W (ds, dy),

where pt is the fundamental solution of the homogeneous equation ∂u
∂t (t, x) =

Lu(t, x), p̃t(x) = pt(−x) for all x ∈ R
d and the stochastic integral is taken in the

sense of Walsh [19].
Notice that since L is the generator of a Lévy process (Xt)t≥0, the fundamental

solution pt corresponds to the law of Xt. We assume that the Lévy process X
admits densities, so that pt is a well-defined measurable function. An extension to
the case where pt is a measure would require to work with integrals in the spectral
domain. Such an extension is not discussed here, but an insight can be found in
[6, Section 6].

We have the following existence and uniqueness result.

Proposition 2.1. Let µ be the spectral measure of the noise and Ψ the Lévy
exponent of the process generated by L. If

∫

Rd

µ(dξ)

1 + 2ReΨ(ξ)
<∞, (2.2)

then there exists a unique random-field solution to (1.1).

For a proof of this result, we refer to [9], [12] and [19].
In the case where f is a measurable function, condition (2.2) implies that

EX

[∫ t

0

ds f(X(1)
s −X(2)

s )

]

=

∫ t

0

ds

∫

Rd

dx

∫

Rd

dy ps(x)f(x − y)ps(y) <∞,

where X(1) and X(2) are two independent copies of the Lévy process generated by
L and EX is the expectation with respect to these processes. This implies that the

additive functional Af
t :=

∫ t

0
f(X̄s) ds (associated to the function f) of the Lévy

process X̄ := X(1) −X(2) is well-defined. Since the Lévy process X̄ is symmetric,
its Lévy exponent is real given by 2ReΨ(ξ). A direct computation allows to prove

that Af
t ∈ Lp(Ω) for all p ≥ 1.

In the case where f = δ0, we have µ(dξ) = dξ and (2.2) becomes a standard
condition for existence of local times for the Lévy process X̄. See [3, Theorem
1, p.126]. We denote by (Lx

t , t > 0, x ∈ R
d) the local times of the symmetrized

process X̄. We informally have

Lx
t =

∫ t

0

δx(X
(1)
s −X(2)

s ) ds.
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We also refer to the paper by Foondun, Khoshnevisan and Nualart [15] on the
connection between existence of local times for Lévy processes and existence of
solutions to SPDE’s driven by space-time white noise.

We would like to point out that the proof of Proposition 2.1 shows that the
solution u is given as the limit of a Picard iteration scheme. Namely, we set
u0(t, x) = (p̃t ∗ u0)(x) for all t ≥ 0, x ∈ R

d. Then, for all n ≥ 1, we define
recursively a sequence of stochastic process (un(t, x))t≥0,x∈Rd by

un(t, x) = u0(t, x) +

∫ t

0

∫

Rd

pt−s(y − x)un−1(s, y)W (ds, dy).

Then, u(t, x) = limn→∞ un(t, x) in L2(Ω), uniformly over t ∈ [0, T ] and x ∈ R
d.

One can show that the convergence also occurs in Lp(Ω) for all p > 2 (see [9] for
details).

We are now going to show that the solution u to (1.1) can be written as a
series of iterated integrals. This expansion, which corresponds to the Wiener-chaos
expansion of u, will be the main tool used in order to obtain explicit expressions
for the moments of u. This result is a direct consequence of the existence result
and already appears in different contexts, among which [6] and [13] and the wide
litterature of Malliavin Calculus.

Proposition 2.2. Under the assumptions above, we can show that the solution u
to (1.1) is given by

u(t, x) =

∞∑

n=0

vn(t, x), a.s.

where v0 = u0 is deterministic and the processes (vn(t, x) : t ≥ 0, x ∈ R
d) are

defined recursively by

vn(t, x) =

∫ t

0

∫

Rd

pt−s(y − x)vn−1(s, y)W (ds, dy). (2.3)

The series is convergent in L2(Ω).

Proof. Fix t ≥ 0 and x ∈ R
d. Using the Picard iteration scheme, we have

un(t, x) = u0(t, x) +

∫ t

0

∫

Rd

pt−s(y − x)un−1(s, y)W (ds, dy)

As a consequence,

un+1(t, x)− un(t, x) =

∫ t

0

∫

Rd

pt−s(y − x)(un(s, y)− un−1(s, y))W (ds, dy).

Hence, we set vn(t, x) = un(t, x)− un−1(t, x) for all n ≥ 1. Then, (2.3) is satisfied
for n ≥ 2 and we have

un(t, x) = u0(t, x)+

n∑

j=1

(uj(t, x)−uj−1(t, x)) = u0(t, x)+

n∑

j=1

vj(t, x) =

n∑

j=0

vj(t, x),

provided we set v0 = u0, which implies that (2.3) is satisfied for n = 1 as well.
Finally, taking the limit as n goes to ∞ establishes the result. �
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Remark 2.3. The process vn is a n-times iterated stochastic integral. As a conse-
quence, (2.2) shows that u is given as a series of iterated stochastic integrals. This
also helps to obtain explicit formulas for moments if one considers a hyperbolic
equation, see [5] and [6].

Remark 2.4. The expansion obtained in Proposition 2.2 corresponds to the Wiener-
chaos expansion of the solution u(t, x) to (1.1). Indeed, since vn is an n-th iterated
stochastic integral, it belongs to the n-th Wiener chaos.

3. Moment formula for a measurable covariance.

In this section, we will consider the covariance f : Rd \ {0} → R+ to be a
measurable function, locally integrable on R

d \{0}. For instance, one can consider
bounded functions, such as f(x) = e−‖x‖ or functions which are unbounded at
x = 0, such as the Riesz kernels, given by f(x) = ‖x‖−α for 0 < α < d ∧ 2.

We are first going to establish explicit formulas for moments of the processes
vn. From this, we will use the series expansion stated in Proposition 2.2 to deduce
a formula for the moments of the solution u.

First of all, we would like to point out that it is possible to write explicit
expressions for moments of vn in terms of the Fourier transform of pt, since
Fpt(ξ) = etΨ(ξ). This is not precisely the formula that we would like to ob-
tain here. For details, we refer to [5, Lemma 5.2], which mainly concerns the
hyperbolic equation but applies without restrictions to the parabolic case.

We are going to use similar techniques as in the proof of [5, Lemma 5.2] but
we will not write the integrals in spectral form and rather express those as func-
tionals of the Lévy process associated to the operator L. This isn’t possible in the
hyperbolic case, since the Green function does not correspond to the probability
distribution of a Markov process.

We are now ready to state our results. Theorem 3.1 below states the formula
for the expectation of the product of u taken at different points in space. Corollary
3.2 gives the formula for a moment of order p ≥ 1.

Theorem 3.1. Let u denote the solution of (1.1) with operator L as given in
Proposition 2.2. Let t ≥ 0 and x1, . . . , xp ∈ R

d. Then,

E





p
∏

j=1

u(t, xj)



 = EX
x1,...,xp






p
∏

i=1

u0(X
(i)
t )× exp






p
∑

j,k=1
j<k

∫ t

0

drf(X(j)
r −X(k)

r )









 .

(3.1)

where the processes (X
(j)
t )t≥0 (j = 1, . . . , p) are p independent copies of the Lévy

process generated by the operator L and EX
x1,...,xp

is the expectation with respect to

the law of these processes conditionned such that X
(1)
0 = x1, . . . , X

(p)
0 = xp.

Corollary 3.2. Let u denote the solution of (1.1) with operator L as given in
Proposition 2.2. Let t ≥ 0 and x ∈ R

d. Then,

E [u(t, x)p] = EX
x






p
∏

i=1

u0(X
(i)
t )× exp






p
∑

j,k=1
j<k

∫ t

0

dr f(X(j)
r −X(k)

r )









 , (3.2)
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where the processes (X
(j)
t )t≥0 (j = 1, . . . , p) are p independent copies of the Levy

process generated by the operator L and EX
x is the expectation with respect to the

law of these processes conditionned such that X
(1)
0 = · · · = X

(p)
0 = x.

In order to prove Theorem 3.1, we need to go through a series of partial results,
the most important of which is Proposition 3.4 below. First of all, let us define
the following processes. For x ∈ R

d, t ≥ 0 and s ≤ t, set

w0(s; t, x) := v0(t, x) = u0(t, x) = (p̃t ∗ u0)(x).
Then, for n ≥ 1, x ∈ R

d, t ≥ 0 and s ≤ t, we set

wn(s; t, x) :=

∫ s

0

∫

Rd

pt−r(y − x)vn−1(r, y)W (dr, dy). (3.3)

Obviously, we have vn(t, x) = wn(t; t, x). The point of this construction is that,
by the defnition of Walsh stochastic integrals, the processes s 7→ wn(s; t, x) are
martingales for each fixed t ≥ 0, x ∈ R

d and n ∈ N. This will allow us to use Itô’s
formula on the processes s 7→ wn(s; t, x). We start with a lemma.

Lemma 3.3. Let (Xt)t≥0 be the Lévy process with generator L, then

v0(t, x+ y) = EX
y [u0(x+Xt)],

where EX
y denotes the expectation with respect to the law of X under the condition

X0 = y.

Proof. Recall that we assume that the process X admits densities. We have

v0(t, x+y) =

∫

Rd

dz pt(z−x−y)u0(z) =
∫

Rd

dz pt(z−y)u0(x+z) = EX
y [u0(x+Xt)],

as pt is the density of the process Xt starting at 0. �

We can now turn to the first intermediate result of this section, a moment
formula for the processes (wn)n∈N.

Proposition 3.4. Fix an integer m ≥ 1 and n1, . . . , nm positive integers. Fix
x1, . . . , xm ∈ R

d and t1, . . . , tm ∈ R+. Let s ≥ 0 such that s ≤ t1 ∧ · · · ∧ tm. Set
N =

∑m
i=1 ni.

• If N is odd, then E
[
∏m

j=1 wnj
(s; tj , xj)

]

= 0.

• If N is even, set n = N
2 . Then,

E





m∏

j=1

wnj
(s; tj , xj)





=
∑

P(n1,...,nm)

EX





m∏

j=1

u0(xj +X
(j)
tj )

×
∫ s

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
tpi−ri − xqi −X

(qi)
tqi−ri)

]

, (3.4)
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where P(n1, . . . , nm) is the set of all orderings in pairs of different inte-
gers of the set N (n1, . . . , nm) = {1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m} with ni

occurences of the integer i. More precisely,

P(n1, . . . , nm) =

{((p1, q1), . . . , (pn, qn)) : {p1, q1, . . . , pn, qn} = N (n1, . . . , nm),

and pj < qj , ∀j = 1, . . . , n} .

The processes (X
(j)
t )t≥0 (j = 1, . . . ,m) are m independent copies of the

Lévy process generated by L, starting at 0 and EX denotes expectation with
respect to the joint law of these processes. If the set P(n1, . . . , nm) = ∅,
then the expectation vanishes.

Proposition 3.4 is the main ingredient in order to obtain explicit expression for
moments in the proof of Theorem 3.1 below.

The formal proof of Proposition 3.4 looks technical, and we postpone the details
to Section 5. However, we would like to provide a sketch of the ideas, which are
rather simple. The proof is done by induction, first on the number m of terms in
the product and, second, on the total order N of the terms. The order in both
inductions is reduced step-by-step using Itô’s formula recursively (also known as
the integration by parts formula in this form) on the product of the martingales

s 7→ wnm
(s; tm, xm).

Hence, we are able to diminish N by a factor 2 at each step. At certain steps,
one term of the product disappears, hence the induction on m as well. In order
to prove each step, we use properties of Walsh integrals to write the moments as
integrals and, then, transform the spatial integrals into expectations with respect
to the Lévy processes, similarly as in the proof of Lemma 3.3. We can then
combine the new expectation with the ones from previous steps together using the
Markov Property for Lévy processes (Proposition 5.1). Eventually, we obtain the
expressions in Proposition 3.4. To get a first glimpse at how these ideas combine
to produce the result of Proposition 3.4, one can look at the proof for the case
m = 2 in Section 5. The induction step on m is more complicated to write, but is
really treated similarly.

The recursive use of Itô’s formula is similar to [6] (see also [5]), where the
spectral representation of p is used. Here, we use the Lévy processX to express the
integrals as expectations of additive functionals of the symmetrized Lévy process
X̄.

In Proposition 3.4, we assumed that the nj ’s were all positive. But, in the
general case, there might be some of the nj ’s being equal to 0. In Proposition 3.5,
we show that the same expression is valid in that case.

Proposition 3.5. Fix an integer M ≥ 1 and n1, . . . , nM non-negative integers.
Fix x1, . . . , xM ∈ R

d and t1, . . . , tM ∈ R+. Let s ≥ 0 such that s ≤ t1 ∧ · · · ∧ tM .

Set N =
∑M

i=1 ni.

• If N is odd, then E
[
∏M

j=1 wnj
(s; tj , xj)

]

= 0.
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• If N is even, set n = N
2 . Then,

E





M∏

j=1

wnj
(s; tj , xj)





=
∑

P(n1,...,nM)

EX





M∏

j=1

u0(xj +X
(j)
tj )

×
∫ s

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
tpi−ri − xqi −X

(qi)
tqi−ri)

]

, (3.5)

where the notations are those of Proposition 3.4. The expectation vanishes
if the set P(n1, . . . , nM ) = ∅.

Proof. The case where all n1, . . . , nm are positive is proved in Proposition 3.4.
Without loss of generality, suppose that there exists m such that nj = 0 for all
m+ 1 ≤ j ≤M and nj > 0 for j ≤ m. Then, as w0 is deterministic,

E





M∏

j=1

wnj
(s; tj , xj)



 =

(
M∏

k=m+1

w0(s; tk, xk)

)

E





m∏

j=1

wnj
(s; tj , xj)



 .

Now, we can use Proposition 3.4 to compute the expectation and use Lemma 3.3
to compute the product outside the expectation. We obtain

E





M∏

j=1

wnj
(s; tj , xj)





=

(
M∏

k=m+1

EX [u0(xk +X
(k)
tk )]

)
∑

P(n1,...,nm)

EX





m∏

j=1

u0(xj +X
(j)
tj )

×
∫ s

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
tpi−ri − xqi −X

(qi)
tqi−ri)

]

=
∑

P(n1,...,nm)

EX





M∏

j=1

u0(xj +X
(j)
tj )

×
∫ s

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
tpi−ri − xqi −X

(qi)
tqi−ri)

]

.

The result is proved since P(n1, . . . , nM ) = P(n1, . . . , nm) when nm+1 = · · · =
nM = 0. �

Now, we can simplify our expression by getting back to the processes vn rather
than wn.

Corollary 3.6. Fix an integer m ≥ 1 and n1, . . . , nm non-negative integers. Fix
x1, . . . , xm ∈ R

d and t ∈ R+. Set N =
∑m

i=1 ni.
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• If N is odd, then E
[
∏m

j=1 vnj
(t, xj)

]

= 0.

• If N is even, set n = N
2 . Then,

E





m∏

j=1

vnj
(t, xj)





=
∑

P(n1,...,nm)

EX





m∏

j=1

u0(xi +X
(i)
t )

×
∫ t

0

dr1 · · ·
∫ rn−1

0

drn

n∏

j=1

f(xpi
+X

(pi)
t−ri − xqi −X

(qi)
t−ri)



 , (3.6)

where the notations are those of Proposition 3.4. The expectation vanishes
if the set P(n1, . . . , nM ) = ∅.

Proof. Set s = t1 = · · · = tm = t in Proposition 3.5. �

Remark 3.7. We would like to point out that another way to write down (3.6) is:

E





m∏

j=1

vnj
(t, xj)





=
∑

P(n1,...,nm)

EX
x1,...,xm





m∏

j=1

u0(X
(i)
t )

×
∫ t

0

dr1 · · ·
∫ rn−1

0

drn

n∏

j=1

f(X
(pi)
t−ri −X

(qi)
t−ri)



 ,

where EX
x1,...,xm

denotes the expectation with respect to the joint law of the pro-

cesses X(j) (j = 1, . . . , n) under the conditions X
(1)
0 = x1, . . ., X

(m)
0 = xm.

We also recall the following result from Real Analysis. The proof is not very
difficult, hence we leave it to the reader, since it is beyond the scope of this paper.

Lemma 3.8. Let g1, . . . , gn be integrable functions on R+. Suppose that the n
functions are divided in ℓ groups of respectively k1, . . . , kℓ identical functions (k1+
· · ·+ kℓ = n). Then, for all t ≥ 0, the following result holds

∑

π∈Sn(k1,...,kℓ)

∫ t

0

dr1 · · ·
∫ rn−1

0

drn gπ(1)(r1) · · · gπ(n)(rn) =
∏n

i=1

∫ t

0
dr gi(r)

k1! · · · kℓ!
,

where Sn(k1, . . . , kℓ) is the set of all permutations of n objects divided in ℓ groups
of respectively k1, . . . , kℓ identical objects. Namely, |Sn(k1, . . . , kℓ)| = n!

k1!···kℓ!
.

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. By Proposition 2.2, we know that

u(t, x) =

∞∑

n=0

vn(t, x)

and the series converges in Lp(Ω), for all p ≥ 2. Hence,

E





p
∏

j=1

u(t, xj)



 =

∞∑

n1=0

· · ·
∞∑

np=0

E





p
∏

j=1

vnj
(t, xj)





Further, by Corollary 3.6 and distinguishing the vectors (n1, . . . , np) depending on
the sum of their components,

E





p
∏

j=1

u(t, xj)





=

∞∑

n1=0

· · ·
∞∑

np=0

∑

P(n1,...,np)

1{
∑p

j=1 nj is even.}E
X





p
∏

j=1

u0(xj +X
(j)
t )

×
∫ t

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
t−ri − xqi −X

(qi)
t−ri)

]

=

∞∑

n=0

∞∑

n1,...,np=0
∑p

j=1
nj=2n

∑

P(n1,...,np)

EX





p
∏

j=1

u0(xj +X
(j)
t )

×
∫ t

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
t−ri − xqi −X

(qi)
t−ri)

]

= EX







p
∏

j=1

u0(xj +X
(j)
t )×

∞∑

n=0

∞∑

n1,...,np=0
∑p

j=1
nj=2n

∑

P(n1,...,np)

∫ t

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
t−ri − xqi −X

(qi)
t−ri)

]

.

Now, let dP(n1, . . . , np) denote the set of pairings in P(n1, . . . , np) but without
taking the order into account. (For instance,((1,2),(1,3)) and ((1,3),(1,2)) are
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different pairings in P(2, 1, 1), but are the same in dP(2, 1, 1).) We have

E





p
∏

j=1

u(t, xj)





= EX







p
∏

j=1

u0(xj +X
(j)
t )×

∞∑

n=0

∞∑

n1,...,np=0
∑p

j=1
nj=2n

∑

dP(n1,...,np)

∑

all possible
orders of the pairing

∫ t

0

dr1 · · ·
∫ rn−1

0

drn

n∏

i=1

f(xpi
+X

(pi)
t−ri − xqi −X

(qi)
t−ri)

]

.

Then, by Lemma 3.8, we have

E





p
∏

j=1

u(t, xj)





= EX







p
∏

j=1

u0(xj +X
(j)
t )×

∞∑

n=0

∞∑

n1,...,np=0
∑p

j=1
nj=2n

· · ·
∑

dP(n1,...,np)

1

k1! · · · kℓ!
n∏

i=1

∫ t

0

dr f(xpi
+X

(pi)
t−r − xqi −X

(qi)
t−r )





= EX







p
∏

j=1

u0(xj +X
(j)
t )×

∞∑

n=0

∞∑

n1,...,np=0
∑p

j=1
nj=2n

· · ·
∑

dP(n1,...,np)

1

k1! · · · kℓ!

n∏

i=1

∫ t

0

dr f(xpi
+X(pi)

r − xqi −X(qi)
r )



 ,

where k1, . . . , kℓ are the numbers of identical pairs coming in the pairing consid-
ered. Now, using the fact that

∞⋃

n1,...,np=0
∑p

j=1
nj=2n

dP(n1, . . . , np)

=
{

((p1, q1), . . . , (pn, qn)) : pj < qj ; p1, . . . , pn, q1, . . . , qn ≤ p,

without taking the order into account
}
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and that there are n!
k1!···kℓ!

ways to order a particular pairing, we have

E





p
∏

j=1

u(t, xj)





= EX





p
∏

j=1

u0(xj +X
(j)
t )

×
∞∑

n=0

1

n!

p
∑

p1,q1=1
p1<q1

· · ·
p
∑

pn,qn=1
pn<qn

n∏

i=1

∫ t

0

drf(xpi
+X(pi)

r − xqi −X(qi)
r )






= EX





p
∏

j=1

u0(xj +X
(j)
t )

×
∞∑

n=0

1

n!






p
∑

p1,q1=1
p1<q1

∫ t

0

drf(xp1 +X(p1)
r − xq1 −X(q1)

r )






n




= EX





p
∏

j=1

u0(xj +X
(j)
t )

× exp






p
∑

p1,q1=1
p1<q1

∫ t

0

drf(xp1 +X(p1)
r − xq1 −X(q1)

r )









 .

After conditionning on X
(1)
0 = x1, . . . , X

(p)
0 = xp, the result is proved. �

Proof of Corollary 3.2. Take x1 = · · · = xp = x in Theorem 3.1. �

4. Space-time white noise and Lévy local times.

In this section, we will consider the case where the covariance f = δ0 is the
Dirac measure at 0. Hence, the noise W is a space-time white noise and is defined
as a centered Gaussian noise {W (φ) : φ ∈ D(R1+1)} with covariance functional
given by

E[W (φ)W (ψ)] =

∫ ∞

0

dt

∫

R

δ0(dx) (φ(t, ·) ∗ ψ̃(t, ·))(x)

=

∫ ∞

0

dt

∫

R

dξFφ(t, ξ)Fψ(t, ξ).

We notice that no solution exists in dimension d ≥ 2 for space-time white noise,
hence we restrict our attention to the case d = 1. The moment formula is given
by Theorem 4.1 below.

Theorem 4.1. Let u denote the solution of (1.1) with operator L, driven by a

space-time white-noise. Let t ≥ 0 and x ∈ R. Let (X
(j)
t )t≥0 (j = 1, . . . , p) be p
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independent copies of the Lévy process generated by L. Let L0
t (j, k) be the local

time at 0 of the process X(j) −X(k). Informally,

L0
t (j, k) =

∫ t

0

dr δ0(X
(j)
r −X(k)

r ).

Then,

E [u(t, x)p] = EX






p
∏

i=1

u0(x +X
(i)
t )× exp






p
∑

j,k=1
j<k

L0
t (j, k)









 . (4.1)

In order to prove Theorem 4.1, we would like to apply the moment formulae
of Section 3. Therefore, we need to smooth the covariance of the noise through a
convolution procedure. Namely, let ϕ : R → R be the standard gaussian kernel.
Namely,

ϕ(x) = (2π)−1/2 exp(−x2/2).
Let ϕε(x) := ε−1/2ϕ(x/

√
ε). Notice that the noiseW can be extended to the space

of rapidly decreasing C∞-functions. Hence, we can define a noise Wε = {Wε(φ) :
φ ∈ D(R1+1)} by

Wε(φ) :=W (φ ∗ ϕε), (4.2)

where ∗ stands for spatial convolution. The noise Wε is well-defined on the same
probability space as the noise W . Now, notice that

E[Wε(φ)Wε(ψ)] = E[W (φ ∗ ϕε)W (ψ ∗ ϕε)]

=

∫ ∞

0

dt

∫

R

δ0(dx)((φ(t, ·) ∗ ϕε) ∗ (ψ̃(t, ·) ∗ ϕε))(x)

=

∫ ∞

0

dt

∫

R

δ0(dx)(φ(t, ·) ∗ ψ̃(t, ·) ∗ ϕ2ε)(x)

=

∫ ∞

0

dt

∫

R

dxϕ2ε(x)(φ(t, ·) ∗ ψ̃(t, ·))(x).

Hence, the noise Wε is a Gaussian noise with covariance informally given by

E[Ẇε(t, x)Ẇε(s, y)] = δ0(t− s)ϕ2ε(x − y).

Since ϕε is a bounded covariance function, we can apply the results of Section 3
to the solution uε of (1.1) with the noise Wε.

Informally, ϕ2ε converges to δ0 as ε → 0. Hence, Wε is actually an approxi-
mation of the noise W , in which we have turned the covariance measure into a
bounded function. We state two results which make this convergence formal.

Proposition 4.2. Let Z = {Z(t, x), t > 0, x ∈ R
d} be a Walsh-integrable sto-

chastic process with respect to space-time white noise W . Then, for all p ≥ 1,
∫ t

0

∫

R
Z(s, y)Wε(ds, dy) converges in Lp(Ω) to

∫ t

0

∫

R
Z(s, y)W (ds, dy) uniformly in

t ∈ [0, T ] as ε→ 0.
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Proof. For a noise with covariance f , let QW ([0, t] × A × B) := t
∫

R
f(dx)(1A ∗

1̃B)(x) be the covariation measure of the extension of W as a martingale measure
in the sense of Walsh [19]. Let φ, ψ ∈ D(R). We have

∣
∣
∣
∣

∫

R2

φ(x)ψ(y)QWε
([0, t]× dx× dy)−

∫

R2

φ(x)ψ(y)QW ([0, t]× dx× dy)

∣
∣
∣
∣

= t

∣
∣
∣
∣

∫

R

dxϕ2ε(x)(φ ∗ ψ̃)(x) −
∫

R

δ0(dx)(φ ∗ ψ̃)(x)
∣
∣
∣
∣

= t

∣
∣
∣
∣

∫

R

dξFϕ2ε(ξ)Fφ(ξ)Fψ(ξ) −
∫

R

dξFφ(ξ)Fψ(ξ)
∣
∣
∣
∣

≤ t

∫

R

dξ|Fφ(ξ)||Fψ(ξ)||1 − e−
εξ2

2 | −→ 0,

as ε→ 0. This shows that the covariation measure of the martingale measure Wε

converges to the covariation measure of W as ε → 0. Using the results of Walsh
[19] and Dalang [9], this is enough to ensure the convergence of the stochastic
integral in Lp(Ω) for all p ≥ 2. �

Proposition 4.3. The solution to (1.1) with noise Wε converges to the solution
to (1.1) with noise W as ε→ 0 in Lp(Ω), uniformly on t ∈ [0, T ] and x ∈ R.

Proof. This is a consequence of Proposition 4.2 and of the existence result (Propo-
sition 2.1) using the Picard iteration scheme. �

In order to be able to state and prove the moment result in the case where
f = δ0, we need one more result about additive functionals of Lévy processes. We
remind that the existence and uniqueness result ensures that

∫

Rd

dξ

1 + 2ReΨ(ξ)
<∞.

This implies that the symmetrized Lévy process (X̄t)t≥0 admits local times, where

the process X̄ is defined by X̄t := X
(1)
t −X

(2)
t for all t ≥ 0, for X(1) and X(2) two

independent copies of the process generated by L (see Section 2 and [3, Theorem
1, p.126]). Let Lx

t denote the local time at x of X̄ . Then, for any non-negative
bounded function g, we have

∫ t

0

g(X̄s) ds =

∫

Rd

g(x)Lx
t dx, a.s. (4.3)

([3, p.126]). We have the following approximation result.

Proposition 4.4. Let (X̄t)t≥0 be a Lévy process which admits local times (Lx
t :

t > 0, x ∈ R). Then, for all p ≥ 1,

E

[(

exp

(∫ t

0

ϕ2ε(X̄s) ds

)

− exp(L0
t )

)p
]

→ 0,

as ε→ 0.
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Proof. We know by [3, Prop.4, p.130], that the local time L0
t has finite exponential

moments. Hence, it suffices to prove that

E

[(

exp

(∫ t

0

ϕ2ε(X̄s)ds− L0
t

)

− 1

)p
]

→ 0,

as ε→ 0. By (4.3) applied to g ≡ 1, we know that x 7→ Lx
t is in L1(R) a.s. and it

admits a Fourier transform L̂t. Using (4.3) again,
∣
∣
∣
∣

∫ t

0

ϕ2ε(Xs)ds− L0
t

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

ϕ2ε(x)L
x
t dx−

∫

R

Lx
t δ0(dx)

∣
∣
∣
∣

=

∫

R

|Fϕ2ε(ξ)− 1|L̂t(ξ) dξ

≤ 2

∫

R

L̂t(ξ) dξ = 2L0
t , (4.4)

Now, since |Fϕ2ε(ξ)−1| converges to 0 pointwise as ε→ 0, the result follows from
the bound (4.4) and the Dominated Convergence Theorem, since L0

t has finite
exponential moments. �

We are now ready to prove the moment formula in the case where f = δ0.

Proof of Theorem 4.1. Let uε denote the solution to (1.1) with noise Wε defined
in (4.2). By Corollary 3.2, we know that

E [uε(t, x)
p] = EX






p
∏

i=1

u0(x+X
(i)
t )× exp






p
∑

j,k=1
j<k

∫ t

0

dr ϕ2ε(X
(j)
r −X(k)

r )









 .

(4.5)
Moreover, we know by Proposition 4.3 that E[u(t, x)p] = limε→0 E[uε(t, x)

p]. Also,
by Proposition 4.4, we know that for any choice of j, k ∈ {1, . . . , p},

exp

(∫ t

0

ϕ2ε(X
(j)
s −X(k)

s ) ds

)
Lp(Ω)−→ exp(L0

t (j, k)),

for any p ≥ 1. This implies that the right-hand side of (4.5) converges to the
right-hand side of (4.1) as ε → 0. The result is proved by taking the limit as
ε→ 0 in (4.5). �

Remark 4.5. In the case where L = ∆ and X is a Brownian Motion, Theorem
4.1 corresponds to the first part of Theorem 5.3 of [17]. Theorem 3.1 doesn’t
require the use of a Feynman-Kac type representation for the solution, but uses
the Wiener-Chaos expansion instead. Theorem 4.1 is also slightly more general in
the sense that it considers generators of Lévy processes and not only ∆, although
it only handles noises which are white in time. Indeed, this method has very
little chance to apply to fractional noises in time, since they do not involve semi-
martingales and this would prevent us from using Itô’s formula. However, an
advantage of this method is that there is a chance that could provide explicit
expressions for equations with a nonlinear function multiplying the noise, typically
polynomials. This is subject to ongoing research. We would like to notice that
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the approach used in [17] can also be used to obtain the generalized Theorem 3.1
in the case of generators of Lévy processes, rather than the Laplacian ∆.

5. Proof of Proposition 3.4

We first remind the Markov property for Lévy processes in the form that we
are going to use in this section.

Proposition 5.1 (Markov Property). Let (Xt)t≥0 be a Lévy process with values
in R

d and g : Rd → R a bounded continuous function. Let (Ft)t≥0 be the filtration
generated by X. Then, the following Markov property holds

EX
Xt−s

[g(Xs)] = EX
0 [g(Xt) | Ft−s],

where 0 ≤ s ≤ t and EX
y denotes the expectation with respect to the law of X

under the condition X0 = y.

We refer to [3] for more details about the Markov property for Lévy processes.
In order to prove Proposition 3.4 below, we will need a Markov property stated
in a slightly different way. Namely, we will need to consider a functional of two
independent processes conditionned at two different times.

Lemma 5.2 (Markov Property). Let (X
(1)
t )t≥0 and (X

(2)
t )t≥0 be two independent

Lévy processes with values in R
d. Let (F (i)

t )t≥0 be the filtration generated by X(i)

(i = 1, 2). Let g : (Rd)n × (Rd)m → R be a bounded continuous function. Then,
for all r1, r2, t1, . . . , tn, s1, . . . , sm ∈ R+, we have

EX

X
(1)
r1

,X
(2)
r2

[

g(X
(1)
t1 , . . . , X

(1)
tn , X

(2)
s1 , . . . , X

(2)
sm )
]

= EX
0,0

[

g(X
(1)
t1+r1 , . . . , X

(1)
tn+r1 , X

(2)
s1+r2 , . . . , X

(2)
sm+r2) | F (1)

r1 ⊗F (2)
r2

]

,

where EX
x1,x2

denotes the expectation with respect to the joint law of X(1), X(2)

under the condition X
(1)
0 = x1, X

(2)
0 = x2.

Proof. Without loss of generality, we can show the result when n = m = 1. The
general case works the same way. As the processes X(1) and X(2) are independent,

EX [Y | F (1)
r1 ⊗F (2)

r2 ] = EX(1)

[EX(2)

[Y | F (2)
r2 ] | F (1)

r1 ].

Hence, by the Markov property for X(2) first and then for X(1), we have

EX
0,0

[

g(X
(1)
t+r1 , X

(2)
s+r2) | F (1)

r1 ⊗F (2)
r2

]

= EX(1)

0

[

EX(2)

0 [g(X
(1)
t+r1 , X

(2)
s+r2) | F (2)

r2 ] | F (1)
r1

]

= EX(1)

0

[

EX(2)

X
(2)
r2

[g(X
(1)
t+r1 , X

(2)
s )] | F (1)

r1

]

= EX(1)

X
(1)
r1

[

EX(2)

X
(2)
r2

[g(X
(1)
t , X(2)

s )]
]

= EX

X
(1)
r1

,X
(2)
r2

[g(X
(1)
t , X(2)

s )].

�
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Remark 5.3. We notice that the use of the Markov property above is completely
formal when the function g is bounded. In the proofs below, we may want to
consider the Markov property for a function that is unbounded at x = 0. In that
case, we can consider the function

gn(x) := g(x) ∧ n,

apply the Markov property and then pass to the limit as n→ ∞. This procedure

will be valid in the proofs below since E[(
∫ t

0
f(X̄s) ds)

p] < ∞ for all p ≥ 1 by the
assumption of the existence result (Proposition 2.1). We will use this procedure
throughout the proof below without developping the details.

Proof of Proposition 3.4. As mentioned in Section 3, the proof of Proposition 3.4
uses a double induction, both on the number of terms m and the order N =
∑m

i=1 ni. We decomposed the proof below in different cases. We start the proof
with the case m = 1 which is handled as a particular case.

Case m = 1. In that case, by the martingale property of the stochastic integral,
we have E[wn1 (s; t, x)] = 0 for all x ∈ R

d, 0 ≤ s ≤ t and this proves the result if
n1 is odd. If n1 is even, the left-hand side of (3.4) vanishes. Moreover, for n1 ∈ N,
the set N (n1) is formed with n1 occurences of the integer 1. It is not possible to
find any pairing of different integers from this set and, hence, P(n1) = ∅ and the
right-hand side of (3.4) vanishes as well.

We are now going to prove the result by induction on m. We first consider
the case m = 2, for which we are going to obtain the result by induction on
N =

∑2
i=1 ni. The smallest possible value of N is N = 2.

Case m = 2, N = 2. If m = 2 and N = 2, then we must have n1 = 1, n2 = 1.
In that case, using the definition of w1 and the properties of Walsh stochastic
integrals, we have

E[w1(s; t1, x1)w1(s; t2, x2)]

=

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pt1−r(y − x1)f(y − z)pt2−r(z − x2)v0(r, y)v0(r, z).

Using the fact that pt is the density of the Lévy process (Xt)t≥0 starting at 0 and
Lemma 3.3, we have

E[w1(s; t1, x1)w1(s; t2, x2)]

=

∫ s

0

drEX [f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)v0(r, x1 +X

(1)
t1−r)v0(r, x2 +X

(2)
t2−r)]

=

∫ s

0

drEX
[

f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)

× EX

X
(1)
t1−r

[u0(x1 +X(1)
r )]EX

X
(2)
t2−r

[u0(x2 +X(2)
r )]

]

.

Now, let (F (i)
t )t≥0 denote the filtration generated by X(i). By the Markov prop-

erties (Theorem 5.1) for the processes X(1) and X(2) and their independence, we
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have

E[w1(s; t1, x1)w1(s; t2, x2)]

=

∫ s

0

drEX
[

f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)

× EX [u0(x1 +X
(1)
t1 ) | F (1)

t1−r]E
X [u0(x2 +X

(2)
t2 ) | F (2)

t2−r]
]

=

∫ s

0

drEX
[

f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)

× EX [u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 ) | F (1)

t1−r ⊗F (2)
t2−r]

]

=

∫ s

0

drEX
[

EX [f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)

× u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 ) | F (1)

t1−r ⊗F (2)
t2−r]

]

=

∫ s

0

drEX
[

f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)u0(x1 +X

(1)
t1 )u0(x2 +X

(2)
t2 )
]

,

because f(x1 + X
(1)
t1−r − x2 − X

(2)
t2−r) is F (1)

t1−r ⊗ F (2)
t2−r measurable. Finally, by

Fubini’s theorem,

E[w1(s; t1, x1)w1(s; t2, x2)]

= EX

[

u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 )

∫ s

0

drf(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)

]

.

As N (1, 1) = {1, 2}, P(1, 1) = {(1, 2)} and the result is proved for m = 2, N = 2.

Let us now consider the case m = 2, N = 3.

Case m = 2, N = 3. We must have n1 = 2, n2 = 1 (or the other way around). In
that case, using the definitions of w1 and w2 and the properties of Walsh stochastic
integrals, we have

E[w2(s; t1, x1)w1(s; t2, x2)]

=

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pt1−r(y − x1)f(y − z)pt2−r(z − x2)E[v1(r, y)]v0(r, z)

= 0,

as E[v1(r, y)] = 0 for all r ≥ 0, y ∈ R
d. The result is proved for m = 2, N = 3.

Let us now proceed by induction on the order N .

Case m = 2, induction on N . Assume that the result is proved for m = 2 and
all N ≤ M − 1. Let n1, n2 ∈ N such that n1 + n2 = M . Then, again by the
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definition of wn and the properties of Walsh stochastic integrals, we have

E[wn1(s; t1, x1)wn2(s; t2, x2)]

=

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pt1−r(y − x1)f(y − z)pt2−r(z − x2)

× E[vn1−1(r, y)vn2−1(r, z)].

If M is odd, then (n1 − 1) + (n2 − 1) =M − 2 is odd as well and

E[vn1−1(r, y)vn2−1(r, z)] = 0

for all r ≥ 0, y, z ∈ R
d by the induction assumption applied with t1 = t2 = r,

x1 = y, x2 = z.
If M is even, then (n1 − 1) + (n2 − 1) =M − 2 is even, and we can write

E[vn1−1(r, y)vn2−1(r, z)]

using the induction assumption with t1 = t2 = r, x1 = y, x2 = z. First, using the
fact that pt is the density of X , we have

E[wn1(s; t1, x1)wn2 (s; t2, x2)]

=

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pt1−r(y − x1)f(y − z)pt2−r(z − x2)

× E[vn1−1(r, y)vn2−1(r, z)]

=

∫ s

0

drEX
[

f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r) (5.1)

×
(

E[wn1−1(r; r, x1 + y)wn2−1(r; r, x2 + z)]

∣
∣
∣
∣y=X

(1)
t1−r

,z=X
(2)
t2−r

)]

.

But, asN (n1−1, n2−1) is composed of n1−1 occurences of 1 and n2−1 occurences
of 2, the only element of P(n1 − 1, n2 − 1) is ((1, 2), . . . , (1, 2)). As a consequence,
by the induction assumption,

E[wn1−1(r; r, x1 + y)wn2−1(r; r, x2 + z)]

= EX



u0(x1 + y +X(1)
r )u0(x2 + z +X(2)

r )

×
∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1

n−1∏

j=1

f(x1 + y +X
(1)
r−rj − x2 − z −X

(2)
r−rj)



 ,
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with n =M/2, and

E[wn1−1(r; r, x1 + y)wn2−1(r; r, x2 + z)]

= EX
y,z



u0(x1 +X(1)
r )u0(x2 +X(2)

r )

×
∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1

n−1∏

j=1

f(x1 +X
(1)
r−rj − x2 −X

(2)
r−rj)





=

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1E
X
y,z



u0(x1 +X(1)
r )u0(x2 +X(2)

r )

×
n−1∏

j=1

f(x1 +X
(1)
r−rj − x2 −X

(2)
r−rj)



 .

Further, by Lemma 5.2,

E[wn1−1(r; r, x1 + y)wn2−1(r; r, x2 + z)]

∣
∣
∣
∣y=X

(1)
t1−r

,z=X
(2)
t2−r

=

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1E
X

X
(1)
t1−r

,X
(2)
t2−r



u0(x1 +X(1)
r )u0(x2 +X(2)

r )

×
n−1∏

j=1

f(x1 +X
(1)
r−rj − x2 −X

(2)
r−rj )





=

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1E
X



u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 )

×
n−1∏

j=1

f(x1 +X
(1)
t1−rj − x2 −X

(2)
t2−rj)

∣
∣
∣
∣
F (1)

t1−r ⊗F (2)
t2−r



 . (5.2)

Replacing (5.2) in (5.1), we obtain

E[wn1(s; t1, x1)wn2(s; t2, x2)]

=

∫ s

0

drEX

[

f(x1 +X
(1)
t1−r − x2 −X

(2)
t2−r)

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1

× EX



u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 )

×
n−1∏

j=1

f(x1 +X
(1)
t1−rj − x2 −X

(2)
t2−rj )

∣
∣
∣
∣
F (1)

t1−r ⊗F (2)
t2−r







 .
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Using Fubini’s theorem, the fact that f(x1+X
(1)
t1−r−x2−X(2)

t2−r) is F (1)
t1−r⊗F (2)

t2−r-
measurable and renumbering the integration variables, we obtain

E[wn1(s; t1, x1)wn2(s; t2, x2)]

=

∫ s

0

dr1 · · ·
∫ rn−1

0

drnE
X
[

u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 )

×
n∏

j=1

f(x1 +X
(1)
t1−rj − x2 −X

(2)
t2−rj )





= EX
[

u0(x1 +X
(1)
t1 )u0(x2 +X

(2)
t2 )

×
∫ s

0

dr1 · · ·
∫ rn−1

0

drn

n∏

j=1

f(x1 +X
(1)
t1−rj − x2 −X

(2)
t2−rj )



 .

As the only element in the set P(n1, n2) is ((1, 2), . . . , (1, 2)), this proves the result
in the case where m = 2.

We will now prove the general formula by induction on the number of terms in
the product m. We assume that the result is true for any number of terms in the
product, up to m − 1, and consider the case with m terms. Again, we are going
to prove the result by induction on N . The smallest possible value is N = m.

Induction on m, case N = m. If we have m terms and N = m, then we
must have n1 = · · · = nm = 1. In that case, the process s 7→ w1(s; t, x) is
a martingale for all t ≥ 0, x ∈ R

d. We apply Itô’s formula with the function
h(x1, · · · , xm) =

∏m
j=1 xj , then take an expectation, which cancels the martingale

term. We are only left with the expectation of the quadratic variation term. (For
details, one can refer to [6, Proof of Lemma 6.2].) We finally obtain

E





m∏

j=1

w1(s; tj , xj)





=

m∑

i=1

i−1∑

j=1

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pti−r(y − xi)f(y − z)ptj−r(z − xj)

× v0(r, y)v0(r, z)× E






m∏

k=1
k 6=i,j

w1(r; tk, xk)






=

m∑

i=1

i−1∑

j=1

∫ s

0

drEX
[

f(xi +X
(i)
ti−r − xj −X

(j)
tj−r)

× v0(r, xi +X
(i)
ti−r)v0(r, xj +X

(j)
tj−r)

]

× E






m∏

k=1
k 6=i,j

w1(r; tk, xk)




 .
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We now handle the first term in the time integral as in the case m = 2 using
Lemma 3.3. The second term is the expectation of a product of m − 2 terms.
Hence, we can use the induction assumption on m to express it. If m is odd, then
the second expectation in the integral vanishes and the whole expression as well.
If m is even, we can use (3.4). Let P̃i,j denote the set of ordered pairs of different
integers of the set N (n1, . . . , nm), from which we delete the occurence of each i
and j. We finally obtain

E





m∏

j=1

w1(s; tj , xj)





=

m∑

i=1

i−1∑

j=1

∫ s

0

drEX [u0(xi +X
(i)
ti )u0(xj +X

(j)
tj )f(xi +X

(i)
ti−r − xj −X

(j)
tj−r)]

×
∑

P̃i,j

EX






m∏

k=1
k 6=i,j

u0(xk +X
(k)
tk )

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1

×
n−1∏

ℓ=1

f(xpℓ
+X

(pℓ)
tpℓ−rℓ

− xqℓ −X
(qℓ)
tqℓ−rℓ

)

]

,

where n = m/2. By Fubini’s theorem, a renumbering of the integration variables
and the fact that

m⋃

i=1

m⋃

j=i+1

⋃

p∈P̃i,j

{((i, j), p)} = P( 1, . . . , 1
︸ ︷︷ ︸

m times

),

the result is proved for N = m.

Now, we consider the case where N = m+ 1.
Induction on m, case N = m + 1. Without loss of generality, we can suppose
that n1 = 2 and n2 = · · · = nm = 1. In that case, Itô’s formula shows that

E



w2(s; t1, x1)

m∏

j=2

w1(s; tj , xj)





=

m∑

i=2

i−1∑

j=2

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pti−r(y − xi)f(y − z)ptj−r(z − xj)

× v0(r, y)v0(r, z)× E




w2(r; t1, x1)

m∏

k=2
k 6=i,j

w1(r; tk, xk)
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+

m∑

j=2

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pt1−r(y − x1)f(y − z)ptj−r(z − xj)v0(r, z)

× E




w1(r; r, y)

m∏

k=2
k 6=j

w1(r; tk, xk)




 ,

and

E



w2(s; t1, x1)

m∏

j=2

w1(s; tj , xj)





=

m∑

i=2

i−1∑

j=2

∫ s

0

drEX
[

f(xi +X
(i)
ti−r − xj −X

(j)
tj−r)

× v0(r, x1 +X
(i)
ti−r)v0(r, xj +X

(j)
tj−r)

]

E




w2(r; t1, x1)

m∏

k=2
k 6=i,j

w1(r; tk, xk)






+
m∑

j=2

∫ s

0

drEX




f(x1 +X

(1)
t1−r − xj −X

(j)
tj−r)v0(r, xj +X

(j)
tj−r)

×




E




w1(r; r, y)

m∏

k=2
k 6=j

w1(r; tk, xk)






∣
∣
∣
∣
y=X

(1)
t1−r









 . (5.3)

First, we can see that if m is even, then N = m+1 is odd. In that case, the last
expectation in the first term in (5.3) corresponds to the case m − 2, N = m − 1
and hence vanishes by induction. The last expectation in brackets in the second
term of (5.3) corresponds to the case m − 1, N = m − 1 and vanishes as well.
Hence, the result is true if m is even. Now, if m is odd, we can handle the
first term above with Lemma 3.3 and the induction assumption, since the second
expectation does not depend on X(i) and X(j). For the second term, we first
use the induction assumption, then Lemma 5.2 (Markov property) and Fubini’s
theorem. The arguments are analogous to those in the case m = 2 and we skip
the details. This proves the result for N = m+ 1.

Now, we conclude the proof by proving the result for m terms by induction on
N . This will prove the induction step on m and conclude the proof.

Induction on m, induction on N . Suppose that the result is true for all
N ≤ M − 1 and pick n1, . . . , nm ∈ N such that

∑m
i=1 ni = M . By Itô’s formula,
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we have

E





m∏

j=1

wnj
(s; tj , xj)





=

m∑

i=1

i−1∑

j=1

∫ s

0

dr

∫

Rd

dy

∫

Rd

dz pti−r(y − xi)f(y − z)ptj−r(z − xj)

×E




wni−1(r; r, y)wnj−1(r; r, z)






m∏

k=1
k 6=i,j

wnk
(r; tk, xk)









 . (5.4)

Now, if N =
∑m

j=1 nj is odd, then

ni − 1 + nj − 1 +

m∑

k=1
k 6=i,j

nk = N − 2

is odd as well and the expectation above vanishes by induction. The result is
proved for N odd. If N is even, then N − 2 is even as well and we can use the
induction assumption to compute the expectation in (5.4). We obtain

E





m∏

j=1

wnj
(s; tj , xj)





=

m∑

i=1

i−1∑

j=1

∫ s

0

drEX
[

f(xi +X
(i)
ti−r − xj −X

(j)
ti−r)g(X

(i)
ti−r, X

(j)
tj−r)

]

, (5.5)

where

g(y, z) = E




wni−1(r; r, xi + y)wnj−1(r; r, xj + z)






m∏

k=1
k 6=i,j

wnk
(r; tk, xk)









 .

Let

x̃k =







xk if k 6= i, j
xi + y if k = i
xj + z if k = j

and t̃k =

{
tk if k 6= i, j
r if k = i, j.
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Then, by the induction assumption with (t̃1, . . . , t̃m) and (x̃1, . . . , x̃m),

g(y, z)

= E




wn1−1(r; r, x1 + y)wn2−1(r; r, x2 + z)






m∏

k=1
k 6=i,j

wnk
(r; tk, xk)











=
∑

P(n1,...,ni−1,...,
nj−1,...,nm)

EX




u0(xi + y +X(i)

r )u0(xj + z +X(j)
r )

m∏

k=1
k 6=i,j

u0(xk +X
(k)
tk

)

×
∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1

n−1∏

ℓ=1

f(x̃pℓ
+X

(pℓ)

t̃pℓ−rℓ
− x̃qℓ −X

(qℓ)

t̃qℓ−rℓ
)

]

,

=
∑

P(n1,...,ni−1,...,
nj−1,...,nm)

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1E
X
y,z




u0(xi +X(i)

r )u0(xj +X(j)
r )

×
m∏

k=1
k 6=i,j

u0(xk +X
(k)
tk

)

n−1∏

ℓ=1

f(xpℓ
+X

(pℓ)

t̃pℓ−rℓ
− xqℓ −X

(qℓ)

t̃qℓ−rℓ
)




 .

Further, by Lemma 5.2,

g(X
(i)
ti−r, X

(j)
tj−r)

=
∑

P(n1,...,ni−1,...,
nj−1,...,nm)

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1

EX

X
(i)
ti−r

,X
(j)
tj−r




u0(xi +X(i)

r )u0(xj +X(j)
r )×

m∏

k=1
k 6=i,j

u0(xk +X
(k)
tk )

×
n−1∏

ℓ=1

f(xpℓ
+X

(pℓ)

t̃pℓ−rℓ
− xqℓ −X

(qℓ)

t̃qℓ−rℓ
)

]

=
∑

P(n1,...,ni−1,...,
nj−1,...,nm)

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1E
X

[
m∏

k=1

u0(xk +X
(k)
tk )

×
n−1∏

ℓ=1

f(xpℓ
+X

(pℓ)
tpℓ−rℓ

− xqℓ −X
(qℓ)
tqℓ−rℓ

)

∣
∣
∣
∣
F (i)

ti−r ⊗F (j)
tj−r

]

, (5.6)
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because t̃pℓ
− rℓ+ tpℓ

− r = tpℓ
− rk, whenever pℓ = i or j. Replacing (5.6) in (5.5),

we obtain

E





m∏

j=1

wnj
(s; tj , xj)





=

m∑

i=1

i−1∑

j=1

∫ s

0

drEX

[

f(xi +X
(i)
ti−r − xj −X

(j)
tj−r)

×
∑

P(n1,...,ni−1,...,
nj−1,...,nm)

∫ r

0

dr1 · · ·
∫ rn−2

0

drn−1E
X

[
m∏

k=1

u0(xk +X
(k)
tk )

×
n−1∏

ℓ=1

f(xpℓ
+X

(pℓ)
tpℓ−rℓ

− xqℓ −X
(qℓ)
tqℓ−rℓ

)

∣
∣
∣
∣
F (i)

ti−r ⊗F (j)
tj−r

]]

.

Using Fubini’s theorem, the fact that f(xi+X
(i)
ti−r −xj −X(j)

tj−r) is F (i)
ti−r ⊗F (j)

tj−r-
measurable, renumbering the integration variables and the fact that

m⋃

i=1

m⋃

j=i+1

⋃

p∈P(n1,...,ni−1,...,
nj−1,...,nm)

{((i, j), p)} = P(n1, . . . , nm),

we obtain

E





m∏

j=1

wnj
(s; tj , xj)





=
∑

P(n1,...,nm)

∫ s

0

dr1 · · ·
∫ rn−1

0

drn E
X

[
m∏

k=1

u0(xk +X
(k)
tk

)

×
n∏

ℓ=1

f(xpℓ
+X

(pℓ)
tpℓ−rℓ − xqℓ −X

(qℓ)
tqℓ−rℓ)





=
∑

P(n1,...,nm)

EX

[
m∏

k=1

u0(xk +X
(k)
tk )×

∫ s

0

dr1 · · ·
∫ rn−1

0

drn

×
n∏

ℓ=1

f(xpℓ
+X

(pℓ)
tpℓ−rℓ

− xqℓ −X
(qℓ)
tqℓ−rℓ

)



 .

One should notice that in the case where one of the nj ’s is equal to 1, then the
argument is similar but slightly different. Indeed, wnj−1 = w0 and, hence, wnj−1

comes out of the expectation. We can still apply the induction assumption for the
expectation, but we also have to apply Lemma 3.3 for the additional w0 outside
the expectation. The result is proved. �
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