Math 205, Summer I 2016

Week 5b

Chapter 6, Sections 5 and 6;

Chapter 7, Sections 1, 4, 6

2

Week 5b:

6.5 Springs

6.6 Circuits

7.1 First Order Systems of DE

7.4 Nondefective Systems (Homogeneous)

7.6 Nonhomogeneous Systems

The general homogeneous mass-spring system is

$$m\frac{d^2y}{dt^2} + c\frac{dy}{dt} + ky = 0,$$

where m is the mass, k is the spring constant and c is

the damping constant (also called "friction"). In the case c = 0the system is said to be **undamped**.

When $c \neq 0$ the system is **damped**, and the motion depends primarily on the type of damping, determined by the roots.

Problem 5 Solve y'' + 2y' + 5y = 0, with IV

y(0) = 1, y'(0) = 3, and determine whether the system is **overdamped**, **critically damped** or **damped and oscillating**, describe the sketch.

(soln.) char. polyn.
$$r^2 + 2r + 5 = 0$$
, roots are $-1 \pm 2i$,
complex, so the system is underdamped. With
 $y = e^{-t}(c_1 \cos 2t + c_2 \sin 2t)$ we get $1 = y(0) = c_1$,
 $y = e^{-t}(\cos 2t + c_2 \sin 2t)$, so
 $y' = -e^{-t}(\cos 2t + c_2 \sin 2t) + e^{-t}(-2\sin 2t + 2c_2 \cos 2t))$,
(continued ...)
 $3 = y'(0) = -(1+0) + (0+2c_2)$, so $c_2 = 2$,
 $y = e^{-t}(\cos 2t + 2\sin 2t)$.

(graphing observations: see 3 early max/mins,

2 equilibrium crosses, exponential decay.)

Problem 6:

Solve $y'' + 3y' + 2y = 3\cos t$, y(0) = 2, y'(0) = -1.

Solution:

 $y_p = A_0 \cos t + B_0 \sin t, \text{ since } y_H \text{ is given by}$ roots r = -1, -2. The motion in the homog. system is overdamped. We have $y'_p = -A_0 \sin t + B_0 \cos t;$ $y''_p = -A_0 \cos -B_0 \sin t,$ So $3 \cos t = (-A_0 \cos -B_0 \sin t) + 3(-A_0 \sin t + B_0 \cos t)$ $+2(A_0 \cos x + B_0 \sin x).$ Then $0 = -B_0 - 3A_0 + 2B_0$ gives $B_0 = 3A_0; 3 = -A_0 + 3B_0 + 2A_0 = A_0 + 3(3A_0),$ so $A_0 = \frac{3}{10}, B_0 = \frac{9}{10},$ $y = c_1 e^{-t} + c_2 e^{-2t} + \frac{3}{10} \cos t + \frac{9}{10} \sin t.$

3 types, many cases:

- (a) homogeneous, no damping or un-damped:Amplitude, frequency ...
- (b) homogeneous, with damping:underdamping (complex roots, oscillating), critical damping (repeated real), overdamping (distinct real)
- (c) non-homogeneous: $y = y_H + y_p$ where (with damping)
 - $y_H \to 0$ as $t \to \infty$ is the transient solution,
 - and $y = y_H + y_p \to y_p$ as $t \to \infty$, so y_p is the
 - steady-state solution.

Finally, a case with no damping:

Problem 7 Solve y'' + 4y = 0, y(0) = 2, y'(0) = 4.

(Soln.) char. polynomial $r^2 + 4$, roots $\pm 2i$, general soln $y = c_1 \cos 2x + c_2 \sin 2x$; so $2 = y(0) = c_1$, $y = 2 \cos 2x + c_2 \sin 2x$. Then $y' = -4 \sin 2x + 2c_2 \cos 2x$, so $4 = y'(0) = 2c_2$, gives $c_2 = 2$, and IVP soln $y = 2 \cos 2x + 2 \sin 2x$.