Week 5a:

- Chapter 6, Section 1, 2, 3 and 6.5
- 6.1 Higher Order DE
- 6.2 Constant Coef, Homogeneous DE
- 6.3 Nonhomogeneous DE (undetermined coef)
- 6.5 Springs

General Solution: (1) to solve the 2nd order linear DE $y'' + a_1y' + a_2y = 0$ find two linearly independent solutions y_1 and y_2 , then the general solution is $y_H = c_1y_1 + c_2y_2$.

(2) to solve the non-homogeneous 2nd order

linear DE $y'' + a_1 y' + a_2 y = F$,

find a particular solution y_p , then the general

solution is $y = y_H + y_p$, where y_H is the solution of (1).

Problem 1:

Determine all values r so $y = e^{rx}$ is a

solution to y'' - 4y' + 3y = 0.

Find the general solution.

Solution:

For $y = e^{rx}$, we have $y' = re^{rx}$ and $y'' = r^2 e^{rx}$. Substitution in the DE gives $0 = y'' - 4y' + 3y = r^2 e^{rx} - 4re^{rx} + 3e^{rx}$ $= (r^2 - 4r + 3)e^{rx}$. Now $r^2 - 4r + 3 = (r - 3)(r - 1) = 0$ has roots $r_1 = 1$ and $r_2 = 3$, so we get solutions $y_1 = e^x$ and $y_2 = e^{3x}$, so the general solution is $y = c_1 e^x + c_2 e^{3x}$.

Constant Coef, Homogeneous DE

When the DE $y'' + a_1 y' + a_2 y = 0$ has coefficients a_1 and a_2 that are constant, the two linearly independent solutions y_1 and y_2 in the general solution $y_H = c_1 y_1 + c_2 y_2$ may be determined using the roots of the characteristic polynomial $P(r) = r^2 + a_1 r + a_2$.

Three cases:

- (1) For distinct real roots r_1 and r_2 , $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$.
- (2) For a repeated real root r_1 the 2nd independent solution is $y_2 = xe^{r_1x}$, and $y = c_1e^{r_1x} + c_2xe^{r_1x}$.
- (3) For a pair of complex roots r = a + bi and r = a biwith a and b real, b > 0,

 $y = c_1 e^{ax} \cos(bx) + c_2 e^{ax} \sin(bx).$

Recitation on 6.2.

Problem 2:

Solve y'' - 6y' + 34y = 0.

Solution:

The characteristic polynomial is $r^2 - 6r + 34$,

so the quadratic formula gives roots $\frac{6 \pm \sqrt{6^2 - 4 \cdot 34}}{2}$

 $=3\pm5i.$ (why?)

So $y = e^{3x}(c_1 \cos 5x + c_2 \sin 5x)$ is the general solution.

*Postscript: We may

solve Example 5 with the IVP y'' + 4y' + 4y = 0, y(0) = 1, y'(0) = 4.

We also may solve other IVP problems (time

permitting). In any case, the calculation of constants

 c_1 and c_2 to solve an IVP look rather different in

(at least) four cases: the three types of roots in the

homogeneous DE, and

(fourth) the non-homogeneous DE.

6.3 Undetermined Coefficients

Problem 3.

Solve $y'' - 4y' + 3y = 6e^{2x}$.

Solution:

(a) Find the general solution y_H of the homogeneous equation y'' - 4y' + 3y = 0.

(a)
$$y_H = c_1 e^x + c_2 e^{3x}$$
.

(b) Determine the value of the constant A_0 so

 $y_p = A_0 e^{2x}$ is a particular solution.

$$y_p = A_0 e^{2x}, y'_p = A_0(2e^{2x}), y''_p = 4A_0 e^{2x}, \text{ so}$$

$$6e^{2x} = 4A_0 e^{2x} - 4(2A_0 e^{2x}) + 3(A_0 e^{2x})$$

$$= -A_0 e^{2x}, \text{ so } A_0 = -6, y_p = -6e^{2x}.$$

(c) Determine the general solution.

$$y = y_H + y_p = c_1 e^x + c_2 e^{3x} - 6e^{2x}.$$

Compare 3d: If $F = 3x^2$, find constants a_0, a_1 and a_2 so $y_p = a_0 + a_1x + a_2x^2$. $y'_p = a_1 + 2xa_2, \quad y''_p = 2a_2$ gives polynomial equation $3x^2 = 2a_2 - 4(a_1 + 2xa_2) + 3(a_0 + a_1x + a_2x^2)$ all x. x^2 -coef: $3 = 3a_2$, so $a_2 = 1$. x-coef: $0 = -4(2a_2) + 3a_1$ with $a_2 = 1$, so $a_1 = \frac{8}{3}$. constant term: $0 = 2a_2 - 4(a_1) + 3(a_0)$, so $a_0 = \frac{26}{9}$. So $y_p = \frac{26}{9} + \frac{8}{3}x + x^2$.

We have one more **linearity property**:

If $y'' + a_1y' + a_2y = F_1$ and $y'' + a_1y' + a_2y = F_2$

have particular solutions y_{p1} and y_{p2} , then

$$y'' + a_1y' + a_2y = F$$
, for $F = F_1 + F_2$, has
particular solution $y_p = y_{p1} + y_{p2}$.

Example:
$$y'' - 4y' + 3y = 6e^{2x} + 3x^2$$
 has
solution $y_p = -6e^{2x} + \frac{26}{9} + \frac{8}{3}x + x^2$.

Problem 4:

Solve $y'' + 4y' + 5y = 24 \sin x$.

Solution:

The usual trial function for $F(x) = 24 \sin x$ is $y_p = A_0 \cos x + B_0 \sin x$. Before attempting to compute y'_p and y''_p to find A_0 and B_0 (the "undetermined coefficients"), we check y_H for repetition. The homogeneous equation y'' + 4y' + 5y = 0has characteristic polynomial $P(r) = r^2 + 4r + 5$. The quadratic formula gives roots $-2 \pm i$, say $r_1 = -2 + i$ and $r_2 = -2 - i$ (why?). But the "driving force" $F(x) = 24 \sin x$ occurs as a solution of the DE with roots $\pm i$, that is, $a \pm bi$ with a = 0, b = 1, which do not coincide with r_1, r_2 : the **usual** $y_p = A_0 \cos x + B_0 \sin x$ is the correct choice.

Now with
$$y_p = A_0 \cos x + B_0 \sin x$$
, we have
 $y'_p = -A_0 \sin x + B_0 \cos x$, and
 $y''_p = -A_0 \cos x - B_0 \sin x$. Substitution in the DE
gives $24 \sin x = y''_p + 4y'_p + 5y_p$
 $= (-A_0 \cos x - B_0 \sin x) + 4(-A_0 \sin x + B_0 \cos x) + 5(A_0 \cos x + B_0 \sin x)$.

Equating like terms

coef of $\cos x : -A_0 + 4B_0 + 5A_0 = 0$, so $B_0 = -A_0$. coef of $\sin x : -B_0 + 4(-A_0) + 5B_0 = 24$, so $-4A_0 + 4(B_0) = -8A_0 = 24$, gives $A_0 = -3$, $B_0 = 3$, then $y_p = -3\cos x + 3\sin x$, and $y = y_H + y_p = e^{-2x}(c_1\cos x + c_2\sin x) - 3\cos x + 3\sin x$.

Preliminaries on applications:

The above solution $y = y_H + y_p =$

 $e^{-2t}(c_1\cos t + c_2\sin t) - 3\cos t + 3\sin t$

has a typical property found in our applications to springs and circuits. For physical reasons, y_H usually has an exponential decay as $t \to \infty$, so y_H is referred to as the **transient solution** and we get $y = y_H + y_p \to y_p$ as $t \to \infty$. We call y_p the **steady-state solution** because of this property.

Question: How does the behavior of y_p differ in the usual trial solution, as compared with the modified solution? (resonance)

Problem 4b:

Solve $y'' + 16y = 24\cos(4x)$.

Solution:

There are several problems here. Taking $y_p = A\cos(4x)$ may not be enough, as $y'_p = -4A\sin(4x)$. So we might try $y_p = A\cos(4x) + B\sin(4x)$. While that would be the correct trial function for a problem like Solve $y'' + 2y' + 16y = 24\cos(4x)$, it doesn't work here. The reason: the above equation has general homog solution $y_H = c_1 \cos 4x + c_2 \sin 4x$, so for any A and B we'd have $y_H + y_p = y_H$, with no new

independent solutions.

Let's try again. Problem 4b:

Solve $y'' + 16y = 24\cos(4x)$.

Solution:

Take $y_p = x(A\cos 4x + B\sin 4x)$. So $y'_p = (A\cos 4x + B\sin 4x) + x(-4A\sin 4x + 4B\cos 4x)$, and $y''_p =$ $= 2(-4A\sin 4x + 4B\cos 4x) + x(-16A\cos 4x - 16B\sin 4x)$, So "equating like terms" in $24\cos 4x = y''_p + 16y_p$ $= [2(-4A\sin 4x + 4B\cos 4x) + x(-16A\cos 4x - 16B\sin 4x)] + 16(x(A\cos 4x + B\sin 4x))$ gives 24 = 8B, 0 = -8A. So the above $y_p = 3x\sin(4x)$.

Recall General Solution: (2) to solve a 2nd order non-homogeneous 2nd linear DE $y'' + a_1y' + a_2y = F$,

find a particular solution y_p , then the general solution is $y = y_H + y_p$, where y_H is the general solution of the homogeneous equation (same coef, F = 0).

Also recall that we have a collection of functions that occur as solutions of (second order?) homogeneous DE:

(1) e^{ax} ; (2) xe^{ax} ; (3) x^2 (for a = 0, y''' = 0); or, (4) $e^{ax} \cos(bx)$ or $e^{ax} \sin(bx)$.