Week 3a (continued):

Chapter 4, Sections 5 and 6.

Week 3b

Chapter 4, [Sections 7], 8 and 9 $\,$

4.5 Linear Dependence, Linear Independence

4.6 Bases and Dimension

4.7 Change of Basis,

4.8 Row and Column Space

4.9 Rank-Nullity Theorem

Recall that a Vector Space V may be any collection with

formulas for vector plus and scalar mult, $V = (V, +, \cdot)$ with 10 rules.

In practice, in Math 205, Vector Spaces

will usually be subsets of one of four standard

Examples: \mathbf{R}^n ; $V = M_{m \times n}(\mathbf{R})$; $C^k(a, b) =$ functions: f+g, k·f, 0, -f with k derivatives $P_n =$ polynomials with real coef. degree < n.

We usually assume the 10 rules for these four vector spaces

(the rules are easier to verify than to remember).

So to establish that a subset S of one of these spaces is a vector space

we only need to check the last two rules, in

which case we say that S is a

Subspace of V. The

two subspace conditions are the

closure rules (1) for every

 $\vec{u}, \vec{v} \in S$, check $\vec{u} + \vec{v} \in S$ (closure under vector +),

and (2) for every $\vec{u} \in S$, and every scalar

 $c \in \mathbf{R}$, check $c\vec{u} \in S$ (closure under scalar mult).

For the formal definition of **span** and **spanning set** we take

vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ in a vector space V. For the most part,

we think of V as being (1) \mathbf{R}^n ; (2) $C^k(a, b)$; or, (3) a subspace of either (a) Euclidean *n*-space or (b) of *k*-differentiable functions.

A vector $\vec{v} \in V$ is called a

- **linear combination** of the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ if there are scalars c_1, c_2, \ldots, c_k so that $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$.
 - The **span** of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ is the collection of all $\vec{v} \in V$ so that
- \vec{v} is a linear combination of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$.
 - The Span is a subspace of V. If Span = V,
 - we say that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ is a **spanning set** of V.

Examples: (1) \vec{i}, \vec{j} span \mathbb{R}^2 ;

- (2) $\{\vec{i}, \vec{j}, \vec{k}\}$ is a spanning set for R^3 ;
- (3) the coef vectors obtained from the RREF of A span the

solutions of $A\vec{x} = \vec{0}$.

Linear Independence

Vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ in a vector space V are **linearly dependent** if there are scalars c_1, c_2, \ldots, c_k so $\vec{0} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$, with at least one $c_j \neq 0$. Such a vector equation is said to be a **relation** of linear dependence among the $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$. A collection of vectors for which the only solution of the vector equation is the **trivial solution**, $c_1 = 0, \ldots, c_k = 0$ is said to be **linearly independent**.

Examples: (1) \vec{i}, \vec{j} in R^2 ; and

(2) $\{\vec{i}, \vec{j}, \vec{k}\}$ in \mathbb{R}^3 ; are linearly independent.

Verification: $c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$

 $= c_1(1,0,0) + c_2(0,1,0) + c_3(0,0,1) = (c_1,c_2,c_3)$

 $= (0, 0, 0) = \vec{0}$, only when $c_1 = 0, c_2 = 0, c_3 = 0$.

We start with verifications of linear

independence in subspaces of \mathbf{R}^n

Problem

Determine whether the vectors (1, 2, 3),

(1, -1, 2) and (1, -4, 1) are LI or LD in \mathbb{R}^3 .

If they are LD find a relation of linear dependence. Solution [again; same method!]

4

Write the equation as an equation in column vectors,

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix} = c_1 \begin{pmatrix} 1\\2\\3 \end{pmatrix} + c_2 \begin{pmatrix} 1\\-1\\2 \end{pmatrix} + c_3 \begin{pmatrix} 1\\-4\\1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 & 1\\2 & -1 & -4\\3 & 2 & 1 \end{pmatrix} \begin{pmatrix} c_1\\c_2\\c_3 \end{pmatrix}.$$

Observe that this is the homog linear system

with coef matrix $A = (\vec{v}_1 \vec{v}_2 \vec{v}_3)$.

For n-by-n systems the system has a

unique solution exactly when the determinant is non-zero.

We have
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & -4 \\ 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -3 & -6 \\ 0 & -1 & -2 \end{vmatrix} = 0$$

so the system has nontrivial solutions

and the vectors are LD. To find a

relation we continue the reduction

$$A \to \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix},$$

so a spanning vector is (1, -2, 1),

and
$$\vec{0} = \vec{v}_1 - 2\vec{v}_2 + \vec{v}_3$$

is a nontrivial relation of LD.

Linear Independence of functions: we use

the Wronskian.

Bases and Dimension

Our main objective is the definition of basis.

Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ in a vector space

V that are are both (1) a spanning set

for V and (2) linearly independent

are called a **basis** for V. So

(1) \vec{i}, \vec{j} are a basis of R^2 ; and

(2) $\{\vec{i}, \vec{j}, \vec{k}\}$ is a basis of \mathbb{R}^3 .

A vector space has many bases, but the main fact is that if $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$

is a basis of V and $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_j$

is a second basis of V, then the number of

vectors is the same: k = j. The number

of vectors in a basis of V is called the **dimension** of V.

We start with verifications of linear

independence in subspaces of \mathbf{R}^n

Example: Show that the vectors $\vec{v}_1 = (1, 1)$

 $\vec{v}_2 = (1, -1)$ are a basis of \mathbf{R}^2 .

Solution. We know that \vec{i}, \vec{j} are a basis

of \mathbf{R}^2 ; so that the dimension of \mathbf{R}^2 is

We check that $\vec{v}_1 = (1,1)$ and $\vec{v}_2 = (1,-1)$ are linearly independent (LI) since $\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$ $= -2 \neq 0$. Checking that \vec{v}_1 and \vec{v}_2 span \mathbf{R}^2 by expressing each $\vec{v} = (x, y) \in \mathbf{R}^2$ as a linear combination (as we did for $\vec{i},\vec{j})$ takes a little bit of effort, and involves fractions. Checking that each vector equation $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2$ has a solution (without finding c_1, c_2) is easier. (why?) But the main fact has a **practical version** that saves any computation, or even very much further thought. If \vec{v}_1 and \vec{v}_2 did not span \mathbf{R}^2 there would be a 3rd vector \vec{v}_3 not in the span of \vec{v}_1, \vec{v}_2 . But that would make $\vec{v}_1, \vec{v}_2, \vec{v}_3$ linearly independent. We could consider adding further vectors, each new one giving a

larger collection of indep vectors; but

we already have too many, as we've shown

 $\dim(\mathbf{R}^2) \geq 3$. So \vec{v}_1, \vec{v}_2 have to span

(for free, given the main fact),

so \vec{v}_1, \vec{v}_2 is a basis for \mathbf{R}^2 .

This is the use of the text's

Theorem 4.6.10. If the $\dim(V) = n$ for

a vector space V, then any LI set of n vectors is a basis of V.

Problem

Let S be the subspace of $M_2(\mathbf{R})$

consisting of all 2×2 matrices with

trace 0. Find a basis for S and use

that to determine the dimension of S.

Solution

We first describe S. We recall that when

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, Tr(A) = a + d.$$

So S consists of matrices with d = -a. Think

of the entries as parameters, then

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$
$$= \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$$
$$= a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

expresses each matrix in S as a

linear combination of the three matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

so they're a spanning set. But if a combination with coef a, b, c as

above gave A = 0, the zero matrix,

then a = 0, b = 0, c = 0, so this spanning

set is indep, therefore a basis, and

the dimension of S is three.