Math 205, Summer I, 2016
Week 4b: Continued

Chapter 5, Section 8



5.8 Diagonalization
[reprint, week04: Eigenvalues and Eigenvectors] 4+ diagonaliization

1. 5.8 Eigenspaces, Diagonalization

A vector U # 0 in R™ (or in C™) is an eigenvector with eigenvalue \
of an n-by-n matrix A if Av = \v.
We re-write the vector equation as (A — A,,)7 = 0,
which is a homogeneous system with coef matrix (A — AI), and
we want A\ so that the system has a non-trivial solution.
We see that the eigenvalues are the roots of the
characteristic polynomial P(\) = 0, where P(\) = det(A — AI).
To find the eigenvectors we find the distinct
roots A = \;, and for each i solve (A — \;I)7 = 0.

Problem 1. Find the eigenvalues and eigenvectors

3 -1
of A= <_5 _1>
Solution.

P(\) =det(A— M) =

3—A —1
-5 —1-A

=(-1-X)B=-X)—-5=X-21-3-5
= A2 -2 -8=(A—4)(A+2),50 \; =4, \y = —2.

For A\, = 4, we reduce the coef matrix of the system (A — 41)& = 0,



3—4 —1 -1 -1 1 1
A_4I_<—5 —1—4)‘(—5 —5>_><0 0)’
so for x5 = a we get 1 = —a, and the eigenvectors for A\ = 4 are the

vectors (x1,22) = a(—1,1) with a # 0, from the space with basis v; = (-1, 1).

For Ay = —2, we start over with coef
At2l= (3—+52 —1_41r2> - (g _01> |

To find a spanning set without fractions, we
anticipate that finding x; will use division

by 5, and take xo = 5b. Then 5x1 — x5 = 0 gives
Sx1 = bb, so x1 = b, and (x1,x2) = b(1,5),
spanned by v = (1,5) [or, if you must, (%, 1)].

Example 1 (diagonalization): We write ¢/, U5 as columns, then

e e (-1 (40
S AS—DWIthS—( . 5 and D = diag(4,—2) = 0 —9 )"

Problem 2.

Find the eigenvalues and eigenvectors

10 —-12 8
of A= 0 2 0
-8 12 -6

Solution.
Since A is 3-by-3, the characteristic polynomial P(\) is cubic, ...

. expansion on the 2nd row gives:

10 — A 8
—8 —6 — A

=(2-=N[10 =N (=6 —\) +64] = (2 — X\)[A\2 — 4\ — 60 + 64] = —(\ — 2)3.

we get P(A\) = (2— )



Anyway, this matrix only has one distinct
eigenvalue, \; = 2. To find the eigenvectors,

we reduce the coef matrix A — 21

10—-2 —12 8 2 =3 2
= 0 2—2 0 — 10 0 O
—8 12 —6-2 0O 0 O

We see that x9 and x3 will be free variables,
and anticipating that finding z; will involve
division by 2, take zo = 2s and x3 = t, so
r1 =3s —t; and (x1,2z2,23) = (3s — t,2s,1)
= 5(3,2,0) +t(—1,0,1), has LI spanning vectors
(3,2,0) and (—1,0,1), giving eigenvectors except when s =t = 0,

Example 2 (diagonalization): This 3-by-3 matrix is
NOT diagonalizable, since either
(1) we need 3 LI eigenvectors, but only have 2; OR
(2) the repeated eigenvalue \; = 2 has multiplicity m; = 3, but the

dimension of the eigenspace E5 is di = 2, with m; # d;.



Problem 3. Find the eigenvalues and eigenvectors

3 =2
ofA—<4 _1).

Solution.

3—A —2
4 —1—-A

‘: [(B=A)(=1—=X)+8 =X2—-2\—-3+38
= A2 — 2\ + 5, with roots A = 1 £ 2i. So there are no real A for which there
is a non-trivial real solution Z € R2. But there is a complex solution 0 + 7€ C?
and we solve for by reducing the coef matrix.
The eigenvalues are complex conjugates, say
M=1-2i =X\ =1+ 2i.
We only need to solve one of the systems.

For \y =1—2i, A— (1 —2i)1 =
242  —2
4 —242

. 2 -1+
0 0 '
The above step is semi-legal cheating; we

know the result without doing the computation.



Presuming that the roots are correct(!), we know that there is
a non-trivial solution, so there’s a free-variable; and there must be
a row in the RREF without a leading 1, and so a O-row.
We pick the row with real first entry, and know that the other row
of the RREF is 0.
We can also do the calculation without cheating, the first row
will be (1 1(=1+14)), so we check that (2 4 2i) times
the first row is the 2nd row (getting 0 after subtracting),
for which we need (and check) (2 4 2i)5(—1+ i) = —2.
As basis for the solution we take v; = (1 —,2),
and then get U5 = (1 +14,2) for A,
since an eigenvector for the conjugate value is the
conjugate vector (when A has real entries).
Example 3 (diagonalization): The eigenvalues are distinct,
so this matrix is diagonalizable, and the matrix S uses (complex) eigenvectors

U1, Uo just as in Example 1.

Recall that an n-by-n matrix A is diagonalizable
if and only if A has n linearly independent eigenvectors;
and, we have a definition, matrices A and B are similar if there is an n-by-n
matrix S so that S has an inverse and B = S~1AS.
We also recall that a diagonal matrix D = diag(dy,...,d,)
is a square matrix with all entries 0 except (possibly) on the
main diagonal, where the entries are dy,...,d, (in that order).
Finally, a matrix A is diagonalizable if there is a matrix

S so that S~ AS = D is a diagonal matrix.



Theorem. The matrix A is diagonalizable exactly when
A has n linearly independent eigenvectors.
Further, (1) the diagonal entries in the diagonalization are the eigenvalues,
each occurring as many times on the diagonal as the multiplicity m;
(2) the columns of the matrix S that diagonalizes A
are n LI eigenvectors of A; and,
(3) the j-th column of S has eigenvalue that is the j-th
entry on the diagonal.
Problem 4.
For each eigenvalue, find the multiplicity and a basis

for the eigenspace and determine whether

4 1 6
A= | -4 0 -7 | is diagonalizable.
0O 0 -3
Solution.
: 4—-)X 1
Expanding det(A — AI) on the 3rd row, we have P(\) = (=3 — \) 4
=—B+N[-4A+X+4]=—-3B+N(\—2)?
so A1 = 2 is an eigenvalue with multiplicity 2,
and Ao = —3 is a simple root (multiplicity 1).
2 1 6 2 1 0 2 1 0
For\y=2,A-2[=|—-4 -2 7| —-|-4 -2 0]—=10 0 1
0O 0 =5 0O 0 1 0 0 0

We already have sufficient info to determine
that A is not diagonalizable: Rank(A — 271)=2, so
the dimension of the eigenspace (nullspace!) is 3-2 =1,
less than the multiplicity. We still need bases of the eigenspaces;

and see that v = (—1,2,0) is a basis for A\; = 2.



7 1 6 -1 7 =8
For o =-3, A—(-3)=A+3[=| -4 3 -7 —| 0 =25 25
0O 0 0 0 0 0
(we use Ry — Ry + 2Rs; update, then use Ry — Ry — 4Ry)
1 0 1
— 0O 1 -1 (Rl — —Rl,RQ — —%RQ; update, then Rl — Rl + 7R2)
0O 0 O
So a basis is Up = (—1,1,1), dim(E_3)=3-2=1.
Problem 5.
1 -3 1
Determine whether A= | —1 —1 1 | is diagonalizable or not,
-1 -3 3
given P(\) = (A —2)2(A + 1).
Solution.
Since Ay = —1 is a simple root it is non-defective;
-1 -3 1
and we only need to check \y =2. We have A -2 = -1 -3 1
-1 -3 1
1 3 -1
— [0 0 0 ],sodim(E2)=3—-1=2,and A is diagonalizable.
0O 0 O

We’re not asked for a basis here, but for practice,
To =a,r3 =band x1 + 3xs — 3 =0 gives x1 = —3a + b,
(x1,z2,23) = (—3a + b,a,b) = (—3a,a,0) + (b,0,b) = a(—3,1,0) + b(1,0,1),
so a basis is 7 = (—3,1,0) and v = (1,0, 1).



Example 5 (diagonalization): We write ¢/, U5 as columns,
and also v3 = (1,1,1) as a column for A = —1, then

S = (vivau3) gives STLAS = D, with D = diag(2,2,—1).

Finally, we collect the terminology and results used. If P(\) written

in factored form is P(A) = (A — A1)™' ... (A — A;)™", where the \;
are the distinct roots, we say that A\; has (algebraic) multiplicity m;,
or that \; is a simple root (multiplicity 1) if m; = 1.

Let d; = dim(E),) be the dimension of the eigenspace (sometimes called
the geometric multiplicity), then the main facts are

1. 1 <d; <my;

2. A is non-diagonalizable exactly when there is some eigenvalue (which
must be a repeated root) that is defective, d; < my;

3. A is diagonalizable exactly when every eigenvalue is non-defective,
dj =my, for j=1,...,m;

4. In particular, if P(\) has distinct roots then A is always diagonalizable
(1<d; <m;=1).

We recall that m; - the algebraic multiplicity - is the number of times
the jth distinct eigenvalue is a root of the characteristic polynomial;
and d; - the geometric multiplicity - is the dimension of the

Ajth eigenspace (that is, the nullspace of A — A, I).

Problem 6. Compare eigenspaces and the

4 0 0 4
defective condition for A= 0 2 -3 ]JandA4; =0 2 -3
0 -2 1 0



10

Solution. Both matrices have char polyn P(\) = —(A —4)2(A + 1).

Since A = —1 a simple root (not repeated), it is non-defective.
2 3
0 0] and
0 -2 -3 0 0

0 O 1 0 1
Ay —4=10 -2 -3 —=10 0
0 0

0
We have A —41 = | 0O —2 —3 —>(
0
1

0 —2 -3 0

0
0
0

These matrices test our eigenvector-finding-skills. For the 2nd, the equations

say ro = x3 = 0; while we must have a nontrivial solution. Do you see one?

Don’t Think! Our reflex is x5, x3 bound; 1 = a free,
so (z1,x2,x3) = (a,0,0) = a(1,0,0).
We also have v; = (1,0,0) an eigenvector for the first matrix,
but there’s also a 2nd LI solution, vo = (0, —3,2). So the roots
and multiplicities are the same, only one entry is changed, but A

is diagonalizable; while A; is non-diagonalizable.



