Homework #6

Math 205

Due Thursday, Mar 24 (TuTh) or Friday, Mar 25 (MWF).

You must show your work in order to receive full credit; correct answers with no, or insufficient work, may not receive credit.

- 1. (6 points) Let $B = \{(3,5), (2,-1)\}$ be a (ordered) basis for \mathbb{R}^2 , and let $E = \{(1,0), (0,1)\}$ be the standard basis.
 - (a) Find the change-of-basis matrix $P_{E\leftarrow B}$.
 - (b) Find the change-of-basis matrix $P_{B\leftarrow E}$.
 - (c) If $\vec{v} = (3, -1)$, find $[\vec{v}]_B$.
- 2. (6 points) The nullspace of the matrix

	5	-6	8	-8]
A =	-3	8	4	-4
	2	2	12	-12

has basis $B = \{(-4, -2, 1, 0), (4, 2, 0, 1)\}$

- (a) Is $\vec{v} = (3, -1, 3, 2)$ in the nullspace of A? If so, find $[\vec{v}]_B$.
- (b) Is $\vec{w} = (-12, -6, 4, -1)$ in the nullspace of A? If so, find $[\vec{w}]_B$.
- 3. Consider the matrix

$$A = \begin{bmatrix} 1 & -3 & 1 & -1 & 0 & -1 \\ -1 & 3 & 0 & -1 & 1 & 3 \\ 0 & 0 & 1 & -2 & 0 & 0 \\ 2 & -6 & 0 & 2 & 1 & 0 \end{bmatrix}.$$

- (a) (6 points) Find a basis for the nullspace of A.
- (b) (3 points) Find a basis for the rowspace of A.
- (c) (3 points) Find a basis for the columnspace of A. Explain how you know that the vectors you give are a basis. Did you compute something? If not, how did you know which vectors to pick?
- 4. (6 points) The following problems are to be solved using the Rank-Nullity Theorem.
 - (a) If A is a 6-by-4 matrix with Rank(A) = 1, what is the dimension of the null space of A? Justify your answer.
 - (b) If A is a 6-by-7 matrix, is it possible that Rank(A) = 4 and the dimension of the null space of A is 3? Justify your answer.