Time Value of Money

Basis for the course Power of compound interest $\$ 3,600$ each year into a 401 (k) plan yields $\$ 2,390,000$ in 40 years

First some technical stuff

-You will use your financial calculator in every single module
-The time value of money is the concept that binds the whole course together
\square lf you do not have your financial calculator yet, turn off the PC and buy one now at Staples or Office Max or find a former Fin 225 student and borrow his or hers
-HP12C or HP10BII is recommended
Copyright @2007 Stephen G. Buell

HP10B II users

aTo change number of decimal places, press DISP key followed by an integer 0 to 9

- Always internally to 9 places

IIf "BEGIN" indicator ever appears, press BEG/END key to toggle it off

- END is the default but there is no "END" indicator
-Before any new calculation, clear the entire calculator with CLEAR ALL key
- Pressing the "C" key only erases the display

More HP10BII prep

- Need to make sure your calculator is set for one period per year. Press and hold down your CLEAR ALL key and it should say 1 P_YR. If yours says 12 P_YR (set this way at the factory) you need to fix it. Press 1 and then the orange or green function key followed by the P/YR key on the top row (above PMT). Then retry the CLEAR ALL and it should now say 1 P_YR. You're now good to go.
\qquad
\qquad
\qquad
\qquad
\qquad

HP12C users

\qquad
-To change the number of displayed decimals, \qquad press yellow followed by an integer
If "BEGIN" indicator ever appears, press blue g \qquad followed by the END key to toggle it off

- END is the default but there is no "END" indicator
-Before any new calculation, clear the entire \qquad calculator with yellow fand REG key
- Pressing the "CLX" key only erases the display \qquad
- CLX is for fixing typos
- f and REG makes it factory fresh ready for new problem

Power of compound interest

DIf the Native Americans had taken the $\$ 24$ \qquad worth of beads and trinkets they received from the sale of Manhattan Island in 1626 \qquad and invested it at 8%, today their investment would be worth $\$ 130$ trillion! \qquad
aThey could buy back New York plus a couple of other major cities \qquad
\qquad

Our symbols

$\square P V_{0}=$ present value at time 0 (today)
$\square F V_{n}=$ future value at time n (n periods from today)
$\mathrm{D}=$ interest rate per period (like . 06 or 6\%)
-n = number of periods

Compound interest

\qquad
IInvest $\$ 100\left(\mathrm{PV}_{0}\right)$ today at an interest rate of $6 \% / \mathrm{yr}$ for 1 year

- $\mathrm{FV}_{1}=100+100(.06)=100(1+.06)=\$ 106.00$

DLeave it all in for a second year and earn 6% on the original $\$ 100$ again plus 6% on the first year's $\$ 6.00$ of interest

- $\mathrm{FV}_{2}=106+106(.06)=106(1+.06)=\$ 112.36$
- $\mathrm{FV}_{2}=100(1+.06)(1+.06)=100(1+.06)^{2}$
- $\mathrm{FV}_{\mathrm{n}}=100(1+.06)^{\mathrm{n}}$ and $\mathrm{FV}_{\mathrm{n}}=\mathrm{PV}_{0}(1+\mathrm{i})^{\mathrm{n}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Most important equation in finance \qquad
$\square \mathrm{FV}_{\mathrm{n}}=\mathrm{PV}_{0}(1+\mathrm{i})^{\mathrm{n}}$ \qquad
$\square F V_{2}=100(1+.06)^{2}$

- $100=>P V 6=>i$ 2=>n solve for $F V=-112.36$ \qquad
- Interest rate is entered as 6 and not . 06 aFor now disregard the negative sign \qquad
Olnvest $\$ 2,000$ for 40 years at $\mathrm{i}=8 \%$
$\square \mathrm{FV}_{40}=2,000(1.08)^{40}$ \qquad
- $40=>$ n $8=>$ i $2000=>P V$ solve for $F V=-43,449$ aNegative sign is a convention used by HP \& Excel \qquad

Copyright ©2007 Stephen G. Buell

Same problem only different

- You invest $\$ 2,000$ for 40 years and emerge at the end with $\$ 43,449$
-What was the annual growth (interest) rate? \qquad
$\square F V_{n}=P V_{0}(1+i)^{n}$
-43,449 = 2,000 $(1+i)^{40}$
- 43,449=>FV 2,000=>PV 40=>n solve for i
-"Error 5" or "No solution" Now the minus sign convention matters PV \& FV must have opposite signs (use CHS or +/-)
- $-43,449=>F V 2,000=>P V 40=>n$ solve for $\mathrm{i}=8 \%$

Discounting - PV

\qquad
DWhat's a future sum worth today?
-Investment promises lump-sum payoff of $\$ 10,000$ in 20 years; what's it worth today?

- How much would you be willing to pay today for this promise?
- How much would you have to invest today to amass $\$ 10,000$ in 20 years?
\square Need to know the interest rate - expected rate of return - let's assume it's 6\% a year

Copyright ©2007 Stephen G. Buell

Same formula

$\square F V_{n}=P V_{0}(1+i)^{n}$
\square Now we know $F V_{n}$ and are looking for $P V_{0}$ $\square P V_{0}=F V_{n} /(1+i)^{n}$
$\square P V_{0}=10,000 /(1+.06)^{20}$

- 10000=>FV 6=>i 20=>n solve PV=-3118.05
- $\$ 3,118.05$ invested today at 6% will grow to \$10,000 in 20 years
- You'd be willing to pay $\$ 3,118.05$ today for the promise if you wanted a 6% annual return

One formula - three ways

-Given a PV today, you can find what it'll \qquad be worth at some point in the future by - $\mathrm{FV}_{\mathrm{n}}=\mathrm{PV} \mathrm{V}_{0}(1+\mathrm{i})^{\mathrm{n}}$
-GGiven a FV at some point in the future, you can find what it is worth today by

- $\mathrm{PV}_{0}=\mathrm{FV}_{\mathrm{n}} /(1+\mathrm{i})^{\mathrm{n}}$
\square Given both the FV and PV, you can find the interest rate with either version
- Just remember to switch one of the signs

Finding i

\qquad
\square You can buy an insurance policy today for \qquad $\$ 3,000$ and then redeem it in 20 years for $\$ 10,000$. To find your rate of return \qquad
$\square 10,000=3,000(1+i)^{20}$

- $-3,000=>$ PV 20=>n 10,000=>FV solve $i=?$
- Gotta be higher than 6\%

DAt 6\% it took \$3,118.05 to grow to \$10,000
UStarting with only $\$ 3,000$ so rate must be higher $\mathrm{Di}=6.20 \%$ (6.2047\%)

Copyright ©2007 Stephen G. Buell

Annuities

\qquad
-Series of equal payments at equal intervals \qquad
OOn your child's $1^{\text {st }}$ birthday deposit $\$ 4,000$ in investment earning 8% and continue to invest $\$ 4,000$ thru her $18^{\text {th }}$ birthday. What's the final \qquad amount you have saved for college?
-Could just tediously add up all the FV's

- First deposit + second dep +...+ last dep
- $\mathrm{FV}_{18}=4000(1.08)^{17}+4000(1.08)^{16}+\ldots+4000$
- First is compounded only 17 and last one not at all
\qquad
\qquad
- Annuity of $\$ 4,000=>$ equal amts, regular fixed (annual) intervals for 18 years

Copyright ©2007 Stephen G. Buell

FV of annuity math and notation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FV of annuity math and notation \qquad

$$
\begin{aligned}
& F V=P M T\left[\frac{(1+i)^{n}-1}{i}\right] \\
& {\left[\frac{(1+i)^{n}-1}{i}\right]=\left[F V I F_{a}-i \%-n\right]} \\
& F V=P M T\left[F V I F_{a}-i \%-n\right] \\
& F V=4000\left[F V I F_{a}-8 \%-18\right]
\end{aligned}
$$

FV of annuity on the calculator

$\square \mathrm{FV}_{\mathrm{n}}=$ PMT [FVIF $\left.\mathrm{F}_{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right]$
$\square \mathrm{FV}_{18}=4,000\left[\mathrm{FVIF}_{\mathrm{a}}-8 \%-18\right]$

- $4,000=>P M T \quad 8=>$ i $18=>n \quad F V=\$ 149,800.98$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Notice that $18 \times 4,000=\$ 72,000$
- More than half of the savings is from interest \qquad
- Compounding at work
- Incidentally
$F V=4000\left[\frac{(1.08)^{18}-1}{.08}\right]=4000[37.4502]=149,800.98$

Copyright ©2007 Stephen G. Buell

Present value of an annuity

\square An investment (life insurance policy) promises to pay you \$10,000 a year for 20 years starting one year from today.
What's the investment worth now? What's its present value? How much would you be willing to pay for it today? How much would you have to deposit today to be able to withdraw 20 payments of $\$ 10,000$?
\square All questions have same answer

Enter the star of the show

-To answer any of these questions, need to know:

- The required growth rate
- The going rate of return
- The interest rate you can earn
- Let's assume an interest rate of 8%
-Dependent on risk
\square Dependent on expected inflation

Restate the problem

Receive \$10,000 a year for 20 years starting one year from now
Find the present value of the annuity discounted at $\mathrm{i}=8 \%$
Could just tediously add up all the PV's

- First payment + second payment +...+last payment
- $P V_{0}=10000 /(1.08)^{1}+10000 /(1.08)^{2}+\ldots+10000 /(1.08)^{20}$
- First is discounted 1 and last one is discounted 20
- Annuity simplifies calculations
- Annuity of $\$ 10,000=>$ equal amts, regular intervals for 20 years

Since the $\$ 10,000$ is constant and interval is regular (once a year) can use the PV of annuity formula

PV of annuity math and notation

$$
\begin{aligned}
& P V_{0}=P M T\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] \\
& {\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]=\left[P V I F_{a}-i \%-n\right]} \\
& P V_{0}=P M T\left[P V I F_{a}-i \%-n\right] \\
& P V_{0}=10000\left[P V I F_{a}-8 \%-20\right]
\end{aligned}
$$

PV of annuity on the calculator

\qquad
$\square \mathrm{PV}_{0}=10,000\left[\mathrm{PVIF}_{\mathrm{a}}-8 \%-20\right]$

- 10,000 =>PMT 8=>i 20=>n PV=98,181.47
- Notice that you receive $20 \times 10,000=\$ 200,000$ \qquad
- More than half of the benefits is from interest
- Compounding at work \qquad
- Incidentally
$P V=10000\left[\frac{(1.08)^{20}-1}{.08(1.08)^{20}}\right]=10000[9.818147]=98,181.47$

What's the 98,181.47 mean?

-You could deposit \$98,181 today into an
\qquad investment earning $8 \% / \mathrm{yr}$ and be able to withdraw $\$ 10,000$ each year for 20 years \qquad
Ulf someone or some investment promises you that for $\$ 98,181$ today, you would receive \$10,000 a year for 20 years, you'd be making an 8% annual return

Recap and some examples

Lump - sum (one payment)
$F V_{n}=P V_{0}(1+i)^{n}$
$P V_{0}=\frac{F V_{n}}{(1+i)^{n}}$

Annuity (series of payments)

$$
\begin{aligned}
& F V_{n}=P M T\left(F V I F_{a}-i \%-n\right)=P M T\left[\frac{(1+i)^{n}-1}{i}\right] \\
& P V_{0}=P M T\left(P V I F_{a}-i \%-n\right)=P M T\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Nothing special about a year

-Formulas work even if not annual compounding
\square Let $\mathrm{n}=$ number of periods and $\mathrm{i}=$ interest rate per period
-Lots of very common examples

Application	Frequency	Periods per year
Bonds	Semi- annually	2
Saving accounts	Quarterly	4
 car loans	Monthly	12
Visa \& MC credit cards	Daily	365

Car loan example \#1

-You can afford \$300 monthly car payment \qquad
-Take out a 4-year loan (change to 48 months)
-How much can you spend on a car today, not including the down payment?
DInterest rate $=12 \% / \mathrm{yr}$ compounded monthly $=$ 12\%/12 = 1\%/month
$\square P V_{0}=P M T\left(\right.$ PVIF $\left._{\mathrm{a}}-i \%-n\right)$
$\square P V_{0}=300\left(P V I F_{a}-1 \%-48\right)$

- $300=>$ PMT 1 $=>$ i $48=>n$ solve $\mathrm{PV}=\$ 11,392.19$
\qquad
\qquad
\qquad
\qquad
\qquad

Car loan example \#2

Dream car costs $\$ 25,000$, you put $\$ 5,000$ down -Borrow remaining \$20,000 from dealer
Ilnt rate $=8 \% / \mathrm{yr}$ comp month=> $8 / 12=.667 \% / \mathrm{mo}$
\qquad

- 4 year loan (48 months)
$\square P V_{0}=P M T\left(\right.$ PVIF $\left._{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right)$
-20,000 $=\operatorname{PMT}\left(\right.$ PVIF $\left._{\mathrm{a}}-.667 \%-48\right)$
-20,000=>PV 8/12=.667=>i 48=>n PMT=488.26
-Make 48 monthly payments of $\$ 488.26$ and car is yours

Car loan example \#3

\qquad
-Bank will lend you the 20,000 but requires \qquad 36 monthly payments of $\$ 613.89$

- Find bank's interest rate \qquad
$\square P V_{0}=P M T\left(\right.$ PVIF $\left._{a}-i \%-n\right)$
$\square 20,000=613.89\left(\right.$ PVIF $\left._{a}-\mathrm{i} \%-36\right)$
$\square 613.89=>$ PMT $-20,000=>P V$ 36=>n
solve $\mathrm{i}=.55 \% /$ month or $.55 \times 12=6.6 \% /$ year
\square Bank has lower rate than dealer
\qquad
\qquad
\qquad
\qquad

Bond example \#1

BBond (corporate IOU) maturing in 15 years promises a $\$ 70$ coupon payment every six months plus $\$ 1,000$ at maturity
$\square P V_{0}=P M T\left(\right.$ PVIF $\left._{\mathrm{a}}-\mathrm{i} \%-\mathrm{n}\right)+\mathrm{FV}_{\mathrm{n}} /(1+\mathrm{i})^{\mathrm{n}}$
$\square P V_{0}=70\left(\right.$ PVIF $\left._{a}-i \%-30\right)+1000 /(1+i)^{30}$ \qquad

- Let's say we're given $\mathbf{i}=12 \%$ a year
$\square P V_{0}=70\left(\right.$ PVIF $\left._{\mathrm{a}}-6 \%-30\right)+1000 /(1.06)^{30}$
$\square 70=>$ PMT 6=>i $30=>$ n 1000 $=>$ FV $P V=-\$ 1,137.65$ (bond's price today)

[^0]
Bond example \#2

WWhat if the same bond sells for $\$ 794.53$? \qquad
Find the interest rate or yield to maturity
$\square P V_{0}=P M T\left(P V I F_{a}-i \%-n\right)+F V_{n} /(1+i)^{n}$
$\square P V_{0}=70\left(\right.$ PVIF $\left._{\mathrm{a}}-\mathrm{i} \%-30\right)+1000 /(1+\mathrm{i})^{30}$
$\square 794.53=70\left(\right.$ PVIF $\left._{a}-\mathrm{i} \%-30\right)+1000 /(1+\mathrm{i})^{30}$ $\square 794.53=>$ PV $-70=>$ PMT $-1000=>F V$ $30=>n$ (careful of the signs)
\square Solve $\mathrm{i}=9.00 \%$ per period or 18% per year \qquad

Big 4

\qquad
Lump - sum (one payment)
$F V_{n}=P V_{0}(1+i)^{n}$
$P V_{0}=\frac{F V_{n}}{(1+i)^{n}}$ \qquad

Annuity (series of payments)

opyright ©2007 Stephen G. Buell

Big 4

\qquad
Lump - sum (one payment)
$F V_{n}=P V_{0}(1+i)^{n}$
$P V_{0}=\frac{F V_{n}}{(1+i)^{n}}$

Annuity (series of payments)
$F V_{n}=P M T\left(F V I F_{a}-i \%-n\right)=P M T\left[\frac{(1+i)^{n}-1}{i}\right]$
$P V_{0}=P M T\left(P V I F_{a}-i \%-n\right)=P M T\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]$
Copyright ©2007 Stephen G. Buell

Big 4 - all you need

-Mortgages

- Monthly payments, maximum loan, 15-years vs. 30years, bank or credit union
-Car loans
- Monthly payments, maximum loan, 3, 4, 5 or even 6 years, bank or dealer
-Retirement plans
- Monthly contributions, how soon can you retire, term vs. whole life insurance
\square Get the exact answers, not approximations
\qquad
\qquad
\qquad
\qquad
\qquad

All the math of the course

aYou don't need any more math than
\qquad what we've covered in this module \square All you need is PV and FV of single payments and of annuities
QBut PLEASE do not go on to any other modules until you feel comfortable with this one
\qquad

[^0]: Copyright ©2007 Stephen G. Buell

