Semiconductive and redox properties of V_2O_5/TiO_2 catalysts

Jean-Marie Herrmann,*, Jean Didier, Goutam Deo and Israel E. Wachs

* Laboratoire de Photocatalyse, Catalyse et Environnement,URA au CNRS 1385, Ecole Centrale de Lyon, BP 163, 69131, Ecully Cedex, France
b Zettlemoyer Center for Surface Studies, Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania, 18015, USA

The dc electrical conductivities of a series of V_2O_5/TiO_2 samples were measured at 250 °C and observed to be sensitive to the V_2O_5 loadings: 1, 2, 3, 4 and 6 V_2O_5 wt. % corresponding to 0.9, 1.8, 2.65, 3.5 and 5.3 V atom %. Up to 3% V_2O_5 loading (half monolayer), the electrical conductivity, slightly but constantly, increased whereas, for ≥ 4% vanadium oxide loading, the electrical conductivity increased dramatically by over one order of magnitude. It was concluded that, for low vanadia loadings, well dispersed fractions of a monolayer could be obtained with a better dispersion than that of Eurocat ones, previously studied with the same technique. It appears that the electrical conductivity provides a sensitive method to determine the total amount of V^{5+} ions incorporated in titania during the preparation calculation. In situ measurements of the electrical conductivity during oxygen and methanol cycles suggest that methanol reduces both vanadia and titania. Reduction by the introduction of methanol strongly increases the electrical conductivity of the samples, whereas oxygen decreases the conductivity to the original value. The reproducible conductivity levels indicate the reversible redox process occurring during the exposure of the samples to methanol (reduction) and to oxygen (oxidation). No quantitative relationship exists, between the amounts of dissolved V^{5+} ions detected by the variations in electrical conductivity and the methanol oxidation activity, for this series of V_2O_5/TiO_2 samples. TiO$_2$ appears as a reducible, non-inert support in electronic interaction with supported V_2O_5.

Several reviews outline the importance of supported V_2O_5 catalysts in various oxidation reactions, concerning mostly the mild oxidation of hydrocarbons and the selective catalytic reduction (SCR) of nitrogen oxides by ammonia in flue gases from stationary sources. In these oxidation reactions, it is revealed that V_2O_5 supported on TiO$_2$ is a better catalyst than V_2O_5 supported on Al$_2O_3$ or SiO$_2$. In addition to the role of the support, the V_2O_5 loading is also crucial in determining the activity and selectivity of the catalyst. An active catalyst possesses a well dispersed V_2O_5 phase, which is usually more active and selective than bulk V_2O_5. The behaviour of certain catalysts has been attributed to various factors: (i) the stability of the surface V_2O_5 phase on TiO$_2$; (ii) the structure of the deposited V_2O_5 phase; (iii) the strength and the number of $V=O$ bonds; (iv) the acidity of the surface V_2O_5 and (v) the ease of reduction of the supported V_2O_5 catalyst. Electrical conductivity measurements appear as a choice method to better characterise V_2O_5 deposited on TiO$_2$, especially with regard to points (i), (iii) and (v). Very few electrical studies have been devoted to titania–vanadia systems. Some of them concerned either Ti–V–P–O glasses or Ti–V–O gel coatings, whereas only four references were found to be directly related to titania–vanadia catalysts. In ref. 6, the authors studied the electrical conductivity of V_2O_5–TiO$_2$ mixtures heated at 1023 K and concluded that there was dissolution of some V^{4+} ions in the rutile structure. In ref. 7 and 8, the authors followed the variations in the conductivity of V_2O_5/SiO_2–TiO$_2$ catalysts used in NO + NH$_3$ deNOx reaction. NH$_3$ was found to be a reducing agent with respect to supported V_2O_5. Similarly, NO alone behaved as a reducing agent, probably because of the formation of NO$_2$. In the presence of oxygen (or air), it was proposed that NO reacted directly from the gas phase with chemisorbed NH$_3$ following an Eley–Rideal mechanism.

The semiconductive properties of V_2O_5/TiO_2 catalysts were studied for Eurocat catalysts with nominal contents of 1 and 8 wt. % V_2O_5. It has been found that some V^{5+} ions were able to dissolve in the lattice of TiO$_2$ during the preparation, more precisely during the final calcination, and that the dissolved amount of V^{5+} increased with the nominal content of deposited V_2O_5. This was subsequently confirmed by chemical analysis. Semiquantitative estimations concerning the amount of dissolved V^{5+} ions could be carried out with the same samples etched in isobutyl alcohol. For these samples, the results of conductivity were in favour of the simultaneous presence of a monolayer of V_2O_5, of V_2O_5 particles but also of dissolved V^{5+} ions in the periphery of the support particles. Additionally, it was demonstrated that TiO$_2$ was not an inert support, in contrast to Al$_2O_3$ or SiO$_2$, since, under varying partial pressure of oxygen, the formation of anionic vacancies could be observed. Similar results were obtained on V_2O_5/TiO_2 deNOx catalysts prepared by the equilibrium adsorption method. Here, electrical conductivity was studied to detect possible electronic interactions between carefully designed two-dimensional vanadium oxide species and titania. The molecular structures and reactivities of these surface vanadia species have been extensively investigated over the past few years because of the importance of the applications of such catalytic systems. In addition, methanol oxidation is well known as a sensitive probe reaction to characterise the surface properties of catalysts and the interaction between the deposited surface oxide and the oxide support. Therefore, the electrical conductivity of the model V_2O_5/TiO_2 catalysts was followed in situ during successive sequences under oxygen and methanol atmospheres, at the same pressures and temperature as those used in catalysis, in order to detect any electronic effect occurring at the surface or at the V_2O_5/TiO_2 interface under working conditions. It can be mentioned that the present catalysts are different from Eurocat ones because of the different nature of the TiO$_2$ supports [Degussa P-25 (50 m2 g$^{-1}$) and Thann and Mulhouse (10 m2 g$^{-1}$), respectively] and of the preparation procedure.

Experimental
Catalyst preparation and characterization

The V_2O_5/TiO_2 catalysts were prepared by incipient-wetness
impregnation of a solution of vanadium trispropoxide oxide (Alfa, 95–98% purity) and methanol using TiO$_2$ (P-25, Degussa, 50 m2 g$^{-1}$) as the support.16,17 TiO$_2$ Degussa P-25 consists of non-porous polyhedral particles whose mean size is ca. 30 nm. Solutions of known amounts of vanadium trispropoxide oxide and methanol (Fischer-certified ACS, 99.9%) corresponding to the incipient-wetness impregnation volume and the final amount of vanadium required were prepared and mixed with the TiO$_2$ support in a glove-box filled with nitrogen. The impregnated samples were dried at room temperature for 16 h and subsequently heated to 120 °C for 16 h and then at 300 °C for 16 h, all under flowing nitrogen. The final calcination was performed in O$_2$ (Linde, 99.99% pure) and 450 °C for 2 h.

Raman spectra of the catalyst samples were measured to check for the removal of precursor and solvent and compound/crystallite formation. All the samples were found to be well dispersed, unless otherwise mentioned. Half a monolayer and a complete monolayer were estimated to correspond to 3 and 6 wt.% V$_2$O$_5$, respectively.

Electrical conductivity measurements

A sample of V$_2$O$_5$/TiO$_2$ catalyst (95 mg) was placed between two platinum electrodes where it was slightly compressed (ca. 105 Pa), to ensure good electrical contacts between the grains without modifying the texture or preventing gas-solid interactions on all the surface of the solid. To control the temperature, both electrodes were soldered to thermocouples whose wires were also used, when short-circuited, to determine the electrical conductivity σ of the given powder sample by the formula:

$$\sigma = \frac{1}{R \frac{t}{S}}$$

where R is the electrical resistance measured with an ohmmeter (Kontron, Model DMM 4021) for $1 \leq R/\Omega \leq 2 \times 10^6$ and with a teraohmmeter (Guildline Instruments Model 9520) for $10^6 \leq R/\Omega \leq 10^{14}$ and t/S is the geometrical factor including the thickness t (ca. 2.5 mm) and the cross-sectional area S of the circular electrodes, whose diameter is equal to 1.00 cm. A general description of this static cell has been given elsewhere.17

Results and Discussion

1 Variations in the electrical conductivity of V$_2$O$_5$/TiO$_2$ as a function of surface vanadia coverage

1.1 Definition of a reference state. For (semi)quantitative comparison of the electrical conductivities of the various supported vanadia samples, it is necessary for the solids to have similar textures and identical surface states. This requirement is easily fulfilled, since all the samples have the same support (TiO$_2$, Degussa P-25, mainly anatase). Indeed, the electrical conductivity of a n-type semiconductor power can be written as:

$$\sigma = A[e^{-}]$$

(1)

where $[e^{-}]$ is the concentration of quasi-free electrons and A is a textural parameter, which depends on the compression of the powder and on the number and quality of contact points between particles.17 Because of the nature of the procedure for electrical measurements and of the use of the same TiO$_2$ support, A can be considered to be the same for all the samples under identical conditions.

The common reference state for σ determination has been chosen with the following conditions: 100 Torr oxygen at 250 °C (1 Torr = 133.3 Pa). It has the advantages of (i) eliminating most of the ionically adsorbed species such as H$_2$O$^+$, OH$^-$, which would produce an additional surface conductivity and (ii) avoiding the formation of surface structure defects, such as anionic vacancies, whose ionization produces additional free electrons, which could mask or perturb the possible electronic interaction between vanadia and titania under neutral conditions.9 In addition, these conditions are identical to those used in the catalytic oxidation of methanol.18 The solid was first outgassed for 10 min at room temperature before introduction of 100 Torr O$_2$ and then heated to 250 °C at a heating rate of 5 °C min$^{-1}$.

1.2 Variations in the steady-state conductivity as a function of surface vanadia coverage. The values of the electrical conductivity σ of V$_2$O$_5$/TiO$_2$ measured at steady state at 250 °C are presented in Fig. 1. 6% V$_2$O$_5$/TiO$_2$ corresponds to a monolayer of surface vanadia species on the TiO$_2$ support.11 The variations in σ as a function of V$_2$O$_5$ wt.% indicate the presence of three domains: (i) a linear increase of σ vs. V$_2$O$_5$ wt.% for 0 \leq V$_2$O$_5$ (wt.%) \leq 3. (ii) A slightly steeper increase between 3 and 4 wt.% V$_2$O$_5$ and (iii) a strong increase between 4 and 6 wt.% V$_2$O$_5$, of more than one order of magnitude. Note that trace amounts of crystalline V$_2$O$_5$ particles are present for the 6% V$_2$O$_5$/TiO$_2$ sample.

1.3 Interpretation of $\sigma = f$ (surface vanadia coverage). In a mixture of two conducting oxides, the overall conductivity of the sample becomes governed by the more conducting component at concentrations above a certain percentage, called the percolation threshold.19 This corresponds to a minimum relative amount, above which the electrical conductivity can be established through preferential paths along the sample constituted exclusively of the more conductive minority phase. It has been estimated to be close to 40% for a mixture of oxides of similar texture (particle size and shape).20,21 It can also be suggested, in the case of a deposited oxide, that the conductivity data might be explained by a percolation threshold, when the surface coverage of the titania particles reaches a point where there is a connected path from particle to particle that runs through a more conducting V$_2$O$_5$ surface. Such a 'surface percolation threshold' problem has been previously analysed for Sb$_2$O$_3$/SnO$_2$ and for Pt/TiO$_2$.22,23 For Sb$_2$O$_3$/SnO$_2$, it was expected that the conductivity of SnO$_2$ would decrease sharply when the increasing Sb content corresponded to a monolayer of poorly conductive Sb$_2$O$_4$.24
Actually, the deposition of Sb$_2$O$_5$ gave a strong increase in conductivity because of the n-type doping of SnO$_2$ by Sb$^5+$ ions. For Pt/TiO$_2$ catalysts with metal loadings as high as 10 wt.%, one could have expected an increase in conductivity, because of a possible improvement in the surface conductivity and in the quality of the intergranular contact points. In fact, the reverse was observed, with a decrease in conductivity23 or in photoconductivity24 when the amount of Pt was increased from 0 to 10 wt.%. This was explained by an electron transfer from titania to Pt. These two examples illustrate the fact that, in a supported catalyst, the electrical conductivity is mainly that of the support (in electronic interaction with the supported phase).

In the present case, the above considerations strongly suggest that the overall conductivity measured is essentially that of the support, i.e. of titania which is an n-type semiconductor.17 The variations in conductivity for mixed25,26 or for supported oxides22 are generally attributed to a doping effect. This phenomenon results from the dissolution of heterovalent ions in the lattice of the host oxide, which creates free charge carriers (electrons or holes) according to the valence induction law.27 This dissolution is favoured by calcination, at high temperature, of the support impregnated with the precursor of the deposited oxide. For an n-type semiconductor such as TiO$_2$, an increase in σ results from the dissolution of a heterocation with a valence higher than 4.

In agreement with the results of ref. 9, it can be proposed that the deposition of vanadia, by impregnation and calcination at 450 °C, is accompanied by a partial dissolution of V$^{5+}$ ions in the surface sublayers of TiO$_2$. The substitution of a Ti$^{4+}$ ion by a V$^{3+}$ ion induces a free electron of conduction according to the following scheme:

\[
\begin{align*}
[V^{3+}(:e^-)] & \rightarrow V^{4+} + e^- \\
D & \rightarrow D^+ + e^-
\end{align*}
\]

If pentavalent V$^{5+}$ ions are inserted into tetravalent sites, they can only share four valence electrons with four O$^{2-}$ neighbour ions. The fifth electron cannot be shared and is delocalized around the V$^{5+}$ positive centre. Only a small thermal energy is needed to delocalize this electron and promote it into the conduction band. This can be written as:

\[
\begin{align*}
[(V^{5+}(:e^-)] & \rightarrow (V^{4+}) + e^- \\
d(V^{5+}) & \rightarrow d(V^{4+}) + e^- \\
D & \rightarrow D^+ + e^-
\end{align*}
\]

where D represents a donor centre and D$^+$ its ionized form.

For the V$_2$O$_5$/TiO$_2$ system, it seems that more free electrons are liberated as the amount of deposited V$_2$O$_5$ increases, but with different behaviours according to the amount of V$_2$O$_5$. For V$_2$O$_5$ \leq 3 wt.%, σ increases linearly with the amount of V$_2$O$_5$, but the increase of σ is much less than that of a sample doped in the bulk.28 By contrast, σ increases strongly for V$_2$O$_5$ > 4 wt.%. The amounts of dissolved, isolated V$^{5+}$ ions in the first sublayers of titania, cannot be determined quantitatively, since no calibrated V$^{5+}$-doped titania Degussa P-25 samples are available. Such a determination could be performed in the case of Eurocat catalysts since reference doped solids (etched samples) were available for calibration with dissolved amounts of V$^{5+}$ ions carefully determined by chemical analysis. A rough estimation of the order of magnitude of the amount of dissolved V$^{5+}$ ions could be made if it is assumed that the relative variations $\delta\rho/\rho$ of the electrical conductivity ρ due to doping are similar for both families of solids. Such a comparative estimation gives an amount of V$^{5+}$ ions dissolved in titania as $ca. 10^{-2}$ atom% for nominal V$_2$O$_5$ contents ≤ 3 wt.%. This value is very low and indicative of a well dispersed V$_2$O$_5$ phase at the surface of titania, with only trace amounts of V$^{5+}$ dissolved. This estimation is comparable to that found in ref. 10. From the electrical conductivity results obtained, the present catalysts can be described as follows.

For low amounts of V$_2$O$_5$ (≤ 3 wt.%), the design of a uniform V$_2$O$_5$ overlayer on titania has been successfully obtained i.e. more than 99.999% deposited vanadia is present at the surface of TiO$_2$. There are only traces of V$^{5+}$ dissolved.

For 4 and 6 wt.% V$_2$O$_5$, the amounts of dissolved V$_2$O$_5$ increase more abruptly as a function of the nominal content. According to ref. 9, this means that, above 3 wt.% V$_2$O$_5$, the model of a uniform overlayer does not apply entirely and that some V$_2$O$_5$ particles are progressively formed, whereas more V$^{5+}$ ions penetrate the periphery of titania particles. The amounts of V$^{5+}$ dissolved correspond to isolated ions in the sublattice of TiO$_2$, in substitutional positions with respect to Ti$^{4+}$ sites. They can be present on the whole periphery of titania particles but also at the interface of V$_2$O$_5$ particles with the support.9

The dissolution of V$^{5+}$ ions seems to be directly connected to the amount of vanadia deposited. The higher concentration of vanadia precursor is the driving force for V$^{5+}$ incorporation, by substitution in the lattice of titania during the preparative calcination of the sample. It can be noted that the three domains appearing in Fig. 1 may correspond to those determined by Raman spectroscopy18,28 but, since V$^{5+}$ ions are not detectable by Raman spectroscopy, it is not possible to establish unequivocally a correlation between the Raman and the conductivity domain. At low loadings (ca. 1 wt.% V$_2$O$_5$), a single sharp band has been found at ca. 1030 cm$^{-1}$, is due to an isolated four-coordinated surface vanadium oxide species containing one terminal V=O bond and three bridging V=O—Ti bonds.18,28 Correspondingly, there is a very small V$^{5+}$ dissolution linked to the small slope of the first domain in Fig. 1. At intermediate loadings (2–6 wt.% V$_2$O$_5$), a second band is present at ca. 930 cm$^{-1}$ which has been assigned to a polymerized four-coordinated surface vanadium oxide species.15,18 These higher concentrations of deposited V$_2$O$_5$ species correspond to a greater quantity of V$^{5+}$ ions dissolved, as indicated by the steeper slope of the second domain (Fig. 1).

Because of the valence induction law,22 electrical conductivity measurements enable one to detect minute amounts of dissolved V$^{5+}$ ions. Actually, this does not exclude the possible simultaneous presence of dissolved V$^{4+}$ ions but, since these latter ions are isoelectronic with Ti$^{4+}$ they cannot be detected by this technique. However, since dissolution occurs during the preparative calcination, which is highly oxidative, it can be suggested that most of the dissolved vanadium ions are V$^{3+}$. Stabilised V$^{5+}$ ions in the rutile structure are observed for higher preparation temperature,6 above the anatase–rutile transformation threshold.

2 In situ electrical conductivity study of V$_2$O$_5$/TiO$_2$ during successive sequences in oxygen and methanol

2.1 Procedure. The catalysts were placed in the reference state determined in Section 1: heating in 100 Torr O$_2$ at a heating rate of 5 °C min$^{-1}$ up to a final temperature of 230 °C, then chosen equal to that used for catalytic tests. After outgassing oxygen, methanol was introduced under a pressure of 45.6 Torr, corresponding to that used in catalysis. After reaching the steady state under methanol, the alcohol was removed and replaced by pure oxygen (100 Torr) to follow the reoxidation
of the catalyst. These sequences were repeated twice to study the reversibility of the redox processes occurring at the surface of the solid. The reaction of methanol oxidation was hence followed in situ, but sequentially in separate O\textsubscript{2} and CH\textsubscript{3}OH atmospheres for two reasons. First, the electrodes are made of platinum, chosen for its good electrical properties and for its chemical stability and inertness. However, it is not catalytically inactive in the total oxidation reactions and the total number of exposed surface Pt atoms estimated equal to 3.87 x 1013 (6.4 nmol Pt)\textsubscript{3} may induce a side catalytic activity in the total oxidation of methanol, which could perturb the in situ measurements of the V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{2} samples. Secondly, separate sequences give more precise information on the true effect of each reactant upon the electrical properties of the solids.

Two samples were chosen for comparison, one with a low V\textsubscript{2}O\textsubscript{5} content (1 wt.\%) and the other with the highest content (6 wt.\%). The titania support was tested under similar conditions to detect, by difference with V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{2} samples, possible electronic interactions in the frame of surface oxide–support interactions (SOSI).15

2.2 In situ variations of \(\sigma \) during various O\textsubscript{2}–CH\textsubscript{3}OH sequences

The in situ electrical conductivity variations for the three solids are presented in Fig. 2. For clarity, the initial times (\(t = 0 \)) corresponding to the first introductions of methanol were slightly shifted for each curve. It can be observed that exposure to methanol strongly increases the electrical conductivity of each sample, whereas oxygen produces the opposite effect. The repetition of the various sequences results in reproducible conductivity levels, which is indicative of reversible redox processes. The different curves and sequences can be interpreted as follows.

2.2.1 First sequence in 100 Torr O\textsubscript{2} at 230 °C

The steady-state conductivity in 100 Torr O\textsubscript{2} gives results similar to those obtained at 250 °C in Section 1: \(\sigma \text{(TiO}_2) < \sigma \text{(1\% V}_2\text{O}_5/\text{TiO}_2) < \sigma \text{(6\% V}_2\text{O}_5/\text{TiO}_2) \). They confirm the presence of only trace quantities of dissolved V5+ in TiO\textsubscript{2} for 1\% V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{2} and of substantial quantities for 6\% V\textsubscript{2}O\textsubscript{5}/TiO\textsubscript{2}, because of the difference of two orders of magnitude in \(\sigma \), indicative of a strong n-type doping. The n-type semiconductor character for all three solids was confirmed by the increase of \(\sigma \) during outgassing (\(d\sigma/dP\text{O}_2 < 0 \)) (Fig. 2).

![Fig. 2. Semilogarithmic plot of the kinetics of electrical conductivity variations measured at 230 °C during various sequences in 100 Torr O\textsubscript{2} and in 45.6 Torr CH\textsubscript{3}OH (+ alc). Each sequence is separated by a brief outgassing, indicated by vac or v.](image)
Alternatively, the decrease in σ(TiO$_2$) could be due to the removal of OH groups, whose presence favours surface conduction, probably with the participation of some protons.

2.2.3 Second period under oxygen. The introduction of oxygen drastically decreases σ for all three samples, indicating a strong reoxidation of the surface. However, the final σ level, measured at steady state, is significantly higher than that obtained at the end of the pretreatment (sequence 1). This indicates that a certain degree of reduction persists in O$_2$ after the first period in methanol and this cannot be eliminated by 100 Torr oxygen at 230°C. This effect seems more pronounced for the 6% V$_2$O$_5$/TiO$_2$ sample.

For the TiO$_2$ support alone, the decrease in σ can be attributed to various electron-consuming reactions involving oxygen such as (i) the filling of anionic vacancies:

$$\frac{1}{2}O_2(g) + V_0^\circ + e^- \rightarrow (O_2^-)^0$$

and/or (ii) the reconstitution of the initial pool of ionosorbed oxygen species:

$$O_2 + e^- \rightarrow O_2^-$$ \hspace{1cm} (9)
$$O_2 + 2e^- \rightarrow 2O^-$$ \hspace{1cm} (10)
$$\frac{1}{2}O_2 + 2e^- \rightarrow O^2-$$ \hspace{1cm} (11)

For V$_2$O$_5$/TiO$_2$, the decrease in σ can be ascribed to two simultaneous phenomena: (i) the reoxidation of the support as described above [eqn. (8)–(11)] and (ii) the reoxidation of reduced vanadia which requires the restitution of some free electrons from titania.

$$e^-_{(TiO_2^{\circ})} + e^-_{(V_2O_5)} \rightarrow 2e^-_{(TiO_2^{\circ})} + 2\frac{1}{2}O_2 + V_2O_5 \rightarrow V_2O_3$$

or:

$$2\times e^-_{(TiO_2^{\circ})} + \frac{1}{2}O_2 + V_2O_5 \rightarrow V_2O_3$$

2.2.4 Second sequence under methanol. The kinetic curves $\sigma = f(t)$ under methanol for both V$_2$O$_5$/TiO$_2$ samples are quite reproducible (Fig. 2). This indicates that the reduction of vanadia and the correlative electron transfer to titania correspond to a reversible redox process at the surface of the biphasic solids.

The highest σ value is obtained for 1 wt.% V$_2$O$_5$/TiO$_2$ which primarily contains vanadium oxide monomers at the surface of titania. It can be suggested that the reduction of V$_2$O$_5$ monomers occurs at the bridging V–O support bonds which are very numerous in this highly dispersed sample.

6% V$_2$O$_5$, where a small amount of bulk V$_2$O$_5$ is present on the TiO$_2$ surface. Catalytically, however, the V$_2$O$_5$/TiO$_2$ samples behave differently during the methanol oxidation reaction.

The methanol oxidation reaction is known to probe the redox activity of the surface metal oxide species. Methanol oxidation over monolayer V$_2$O$_5$/TiO$_2$ catalysts indicate that the TOF, which is a measure of the efficiency of each surface vanadium oxide site, is independent of the vanadium oxide loading, and the activity [mole of methanol converted (g catalyst time$^{-1}$)] increases linearly with vanadium oxide loading until monolayer coverages are reached. Thus, comparison of the electrical conductivity with the redox activity of the surface vanadium oxide phase suggests that no direct and quantitative relationship exists, since σ depends strongly on the vanadium oxide loading, whereas the methanol oxidation activity varies linearly with vanadium oxide loading up to monolayer coverages. Electrical conductivity measurements indicate qualitatively that both V$_2$O$_5$ and TiO$_2$ undergo redox cycles under methanol and oxygen and remain permanently in electronic interaction.

Conclusions

Measurement of electrical conductivity appears to be a sensitive method to determine the amounts of dissolved V$^{5+}$ ions in the periphery of particles of titania or at the V$_2$O$_5$/TiO$_2$ interface. Below 4% V$_2$O$_5$, V$_2$O$_5$ could be successfully deposited (ca. 99.99%) as a surface overlayer on titania. Only traces of V$^{5+}$ were dissolved in titania, the amounts being proportional to the nominal percentages of V$_2$O$_5$. For V$_2$O$_5$ \geq 4%, the amount of dissolved V$^{5+}$ increased drastically. This would correspond to the beginning of the existence of V$_2$O$_5$ particles in addition to the V$_2$O$_5$ overlayer, with a corresponding increase in V$^{5+}$ ions dissolved, probably at the V$_2$O$_5$/TiO$_2$ interface, as suggested in ref. 9.

Under successive sequences in oxygen and methanol, the surface of V$_2$O$_5$/TiO$_2$ followed reversible redox processes. Methanol reduced both vanadia and titania. The reduction of the support involves either lattice anions, thus forming anionic vacancies, or ionosorbed oxygen species, and accounts for its own catalytic activity. The high increase in σ in methanol for 1% V$_2$O$_5$/TiO$_2$ supports the idea of a highly dispersed vanadia phase. The higher reduction of vanadia electron transfer to titania, explaining the higher conductivity of vanadia-containing samples.

References

Paper 6/07568A; Received 21st October, 1996