Concentrating Solar Power – Trough Technology

Alex marker SCHOTT North America November 17, 2008

SCHOTT

SCHOTT Solar, Inc.

Parabolic Trough Technology

Receiver is the Key Component in Parabolic Trough Collectors

glass made of ideas

Quality Requirements

For power plant projects a life span of more than 20 years is required to

- Match the business plans which are based on long pay back periods
- → Keep maintenance costs low during operation.

During operation receivers are **mechanically** and **thermally** stressed.

Most important issues are:

- Durability of glass-to-metal seal (break rate close to zero)
- Stability of vacuum
 - (low hydrogen permeation, appropriate getter)
- Durability of absorber coating (only small degradation of efficiency acceptable)
- Abrasion resistance of anti-reflective glass
 Jan 28/2 Coating.

Flux density distribution on absorber (DLR, 2007)

Selective Absorber with Multilayer Cermet for High Temperatures

Performance data:

- → Temperature stable up to 500 °C
- → Solar absorptance >= 95 %
- Thermal emittance <= 14% at 400°C</p>

Material:

- ➔ Polished low-carbon steel as substrate material
- Multilayer Cermet coating

Absorber Coating - Accelerated Aging Test

Aging test of Fraunhofer-ISE: samples at 450°C - 550° C for 1200 h

Result:

change in absorptance and emittance < 1%

	Operating Temperature		
Aging Temp.	300°C	350°C	400°C
50 d @ 450°C	680 y	38 y	3,4 у
50 d @ 500°C	4200 y	240 y	22 y
50 d @ 550°C	21000 у	1200 y	104 y

New Glass-to-Metal Seal Improves Strength Properties

- Breakage of glass-to-metal sealing (Housekeeper) is the main cause for damages of receivers in existing power plants
- Automated production process required to reduce cost and to ensure quality
- > New approach with matched CTE values yields a glass-to-metal seal with low stress
- ➔ Only one glass type necessary

Glass-to-Metal-Seal (GMS) – Automated Proof Test

- FEM analysis shows that the main stress is 6 times lower than in common Housekeeper seal at working temperature
- An automated proof test (100%) ensures the constant quality of the glass-to-metal seal and avoids defective seals entering the production process
- Optimization of production yields an minimization of defects during power plant operation

AR Coating with High Solar Transmittance

- \rightarrow Sol-Gel coating for borosilicate glass based on alcoholic dilutions with SiO₂ nanoparticles for improved abrasion resistance
- Solar transmittance of > 0.96 achieved \rightarrow
- Challenges in production:
 - homogenous and stable coating of long glass tubes (\checkmark)
 - automated high precision solar transmittance test for long glass tubes (\checkmark)

glass made of ideas

AR Coating – Abrasion Tests

AR coating made by SCHOTT	competitive AR coating
freshly" coated:	coating of unused receiver:
> 100 strokes	10 strokes
aged coated envelope:	aged coated envelope:
> 100 strokes	2 strokes

SCHOTT glass made of ideas

Solutions for Hydrogen Problem

Problem:

- Thermo-oil decomposes during operation, hydrogen is generated.
- Hydrogen permeation through steel absorber tube leads to vacuum loss and increased heat loss (factor 2-3)

Solution:

- Barrier coating to reduce permeation rate
- Well designed getter quantity mounted in "cool" place

Field Test in Power Plant

- → 100 Receivers operating in SEGS III, KJC since October 03
- → 200 Receivers installed in SKAL-ET test loop at KJC in July and October 2004
- → Successful field test, no breakage
- About 2% increase in preformance compared to previously installed tubes of competitor (FlagSol)

SKAL-ET test loop

Durability test for GMS

Technical innovations for Receivers

Comparison of HTFs

	Synthetic Oil	Molten Salt	Direct Steam Generation
Maximum operating temperature	400°C	<u>500</u> -520°C	<u>480</u> -500°C
System pressure	30-40 bar	10 bar	60-100 bar
Corrosion of absorber tubes	no	depends on salt quality	no
Hyrogen problem	yes	unlikely	unlikely
Cost reduction		Getter Steel	Getter
Cost increase			Steel
Main problem	Decomposing fluid	Freezing	High pressure and weight

Conclusions

- Receivers for parabolic troughs are commercially available
- The technology is proven 20 years of operation, many lessons learned
- Major improvements in efficiency and durability have been implemented
- Synthetic oil is today's heat transfer fluid. Operation temperature is limited to 400°C,
 - vacuum maintenance due to hydrogen permeation is important
- Molten salt and direct steam generation are the most promising options to increase

the system performance, an operating temperature of 500°C seems to be feasible

