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Abstract
We have studied the nature of structural transitions in B2O3 glass under pressure using
molecular dynamics simulations, based on a newly developed coordination-dependent charge
transfer potential, to complement the results from our earlier Brillouin and Raman scattering
experiments and to interpret these findings. This interaction model allows for charges to
re-distribute between atoms upon the formation and rupture of chemical bonds, and
accommodates multiple coordination states for a given species in the course of the simulation.
The macroscopic observables of the simulated vitreous B2O3, such as the variation of density
and elastic modulus with pressure, agree well with those seen in experiments. The compaction
of simulated structures is based on a polyamorphic transition that involves transitory
four-coordinated boron atoms at high pressures. While the coordination of boron completely
reverts to trigonal upon pressure release, without this transitory coordination increase
permanent densification would not be manifest in the recovered glass. The response of vitreous
B2O3 to pressure is virtually independent of the concentration of boroxol rings in the structure.
In simulated glass, boroxol rings dissolve when subject to pressure, which explains the
disappearance of the breathing mode in the Raman spectrum of compressed B2O3 glass.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite being one of the archetypal network glass formers,
the structure of vitreous B2O3 has been a much debated topic
for many years, particularly with respect to the structural role
played by the boroxol (B3O6) group. The first structural model
of vitreous boron oxide proposed by Zachariasen [1] was that
it consisted of a three-dimensionally random network of BO3

triangles. This was supported by early x-ray diffraction [2]
and NMR [3] studies of vitreous boron oxide. However, it
was pointed out by Fajans et al [4] that the above random
network model failed to explain many physical properties of
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vitreous and liquid B2O3. For instance, it is difficult to explain
the low viscosity (at 1260 ◦C, the viscosity of boron oxide
is smaller than that of silica by a factor 10−11.6), the low
density of 1.80 g cm−3, and, in light of the fact that the
B–O bond is stronger than the Si–O bond, the low melting
point of 450 ◦C for B2O3 [5] (silica glass has a density of
2.2 g cm−3 and the melting point is 1710 ◦C). The model of
a random network of BO3 triangles was further challenged
in 1953 when an anomalously sharp and intense line was
observed in the Raman spectrum of boron oxide at 808 cm−1

by Gorbeau et al [6]. The authors suggested that the BO3

triangles were not randomly oriented, but bonded together into
a boroxol (B3O6) ring. In 1969, Krogh-Moe [7] suggested
that a three-dimensionally random network of BO3 triangles
with a comparatively high fraction of boroxol rings gave
the best explanation for all the available data. The sharp
808 cm−1 Raman line is assigned to the symmetric stretching
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mode [8] or breathing mode [7] of the boroxol ring. Ever
since, the fraction f of boron atoms that can be found in
boroxol rings has been a highly debatable subject. Values of
f ranging from 0.5 to 0.85 have been reported based on x-ray
diffraction [9], neutron diffraction [5, 10, 11], NMR [12, 13]
and Raman [14] studies. However, Dunlevey et al [15] argued
that the fraction of boroxol rings must be small due to a
discrepancy between the radial distribution function predicted
for a glass with a large percentage of boroxol rings and the
actual radial distribution function from their x-ray diffraction
studies on hydrostatically compressed B2O3 glass. Soppe
et al [16] also claimed their x-ray diffraction data can be
explained very well by a model containing more or less
randomly connected BO3 triangles. Wright et al [17] have
constructed two ball-and-stick models for B2O3 glass, each
with equal number of boroxol groups and independent BO3

triangles ( f = 0.75). One model has a random arrangement of
the two structural units, the other an alternate arrangement of
the units. Only the random model gives correlation functions
that compare favorably with neutron diffraction measurements.
The density of the random model is 17% lower than that
of B2O3 glass, suggesting that the proportion of boroxol
rings is too high. Based on the physical [18] and computer
generated [19] ball-and-stick model, Elliot et al claimed that
their models did not have any boroxol rings whatsoever, but
the radial distribution functions agree reasonably well with
experimental curves deduced from x-ray diffraction studies.
This claim has been supported by a number of molecular
dynamics simulations [16, 20–25] of vitreous B2O3 using
potentials with and without three-body constraints of the B–
O–B or O–B–O angles. The aforementioned models with no
boroxol rings were immediately criticized for their unrealistic
bond angles (B–O–B angle is about 150◦–160◦ in simulations
compared to 130◦ in experiments) and their high densities.
Later MD simulations, with the inclusion of three-body
interactions [26–28], four-body interactions [29, 30] or many-
body polarization effect [31], produced vitreous B2O3 glasses
with fractions of boron in boroxol rings ranging from less
than 1% to at most 37%. This trend is reinforced by the
more recent ab initio [32] and reverse Monte Carlo (RMC)
simulations [33, 34] suggesting that the fraction of boroxol
rings ranges between 10 and 20%. The currently accepted
structural model for vitreous B2O3 is a random mixture of BO3

triangles and boroxol rings with no consensus on the f value.
To date, the effect of pressure on glass structure

is relatively unexplored. However, since the range of
pressures that can be routinely achieved in the laboratory
affects large density and, implicitly, structural changes, this
is a superb instrument for gaining new insights into the
nature of the amorphous state of matter. In our previous
simulations [35, 36], we extensively studied pressure-induced
polyamorphic transitions in SiO2 glass, a representative of
a large family of four-coordinated glass-forming materials.
The literature suggests that three-coordinated glasses act quite
differently from four-coordinated glasses under pressure. Of
the three-coordinated glasses, only As2S3 and B2O3 have
been studied under pressure. Grimsditch et al’s early
Brillouin scattering studies [37] showed that As2S3 follows

the same sound velocity-pressure path upon compression and
decompression (up to 4 GPa), whereas B2O3 exhibits a closed,
gradual hysteresis (upon maximum compression to 15 GPa).
These smooth, continuous changes are more indicative of
gradual rearrangements in a random network than of a
transition between structurally distinct vitreous polymorphs.
In contrast, our recent concurrent Brillouin and Raman
experiments [38–40] suggest that vitreous polymorphs do exist
in B2O3 and that the transitions between vitreous polymorphs
can be abrupt. Upon compression the sound velocities increase
smoothly and the boroxol ring Raman mode (808 cm−1)
vanishes by 11 GPa. Upon decompression the sound velocities
follow a different path and at 2–3 GPa exhibit a discontinuity in
sound speeds of 3 km s−1 in Vp (longitudinal) and 2 km s−1 in
Vs (shear), which returns the velocities to the values obtained
on compression. After the transition, the boroxol ring Raman
mode reappears. In addition, a new peak at 881 cm−1

appears in the spectrum, which to date has not definitively
been assigned to a structural feature. A second pressure cycle
produces the same behavior, suggesting the 2–3 GPa transition
occurs between vitreous states with distinct and well-defined
structures. The discontinuity at 2–3 GPa could be the result
of boron going from four to three coordination based on the
location of the discontinuity on the pressure scale: it occurs at
a pressure close to that of the boundary between crystalline
α-B2O3 (with three-coordinated boron) and β-B2O3 (with
distortedly tetrahedrally coordinated boron). This speculation
was supported by recent inelastic x-ray scattering (IXS)
studies, which provide ‘in situ’ direct experimental evidence of
a reversible coordination transformation in the borate glasses
under pressure [41].

It is the focus of this paper to understand the microscopic
mechanism of the polyamorphic transitions in vitreous B2O3,
i.e., the conversion between distinct local structural motifs,
each sufficiently unique to define a different topology in the
ensuing glassy network, as well as to validate the coordination
conversion of boron under pressure. To simulate systems
like boron oxide made of species that can achieve multiple
coordination states, we have developed interaction models that
allow coordination change during simulations [42]. In this
paper we present the application of this new coordination-
dependent charge transfer potential to simulating the high-
pressure behavior of boron oxide glass, and, based on the
comparison between simulation results and light scattering
experiments, we derive new insights into the pressure-induced
structural transitions in this material.

2. Potential parameters and computational
procedure

A detailed description of the charge transfer three-body
potential used in this study is given in [42]. For a
given coordination state, the potential was parameterized by
matching the simulated to experimental values of density, bond
lengths and bond angles, for known crystalline polymorphs,
such as B2O3-I and B2O3-II. The parameters were further
adjusted to give best agreement of density, radial distribution
function, structure factor, bond angle distribution, vibrational
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Figure 1. Total and partial structure factor S(Q) from MD simulations (a) compared to those from neutron scattering experiments [34] (b).

density of states and infrared spectra of molten B2O3 with
experimental data.

The parameters for the coordination-dependent part of the
potential were adjusted so that the coordination of boron in
crystalline B2O3-I is 3 at ambient conditions, and starts to
change from 3 to 4 at approximately 3 GPa, i.e., the pressure
at which B2O3-I transforms in B2O3-II in experiments. We
ascertained that these parameters allow the coordination of
boron to increase upon compression and return to 3 upon
pressure release. This is based on Wright et al’s experimental
observation [43] that there is no coordination change in
permanently densified vitreous B2O3. In the present study,
the coordination-dependent three-body potential is only used
for O–B–O triplets, not for B–O–B triplets, and only 3 and
4-coordinated states are accounted for. The 〈B–O–B〉 angles
are always constrained to the experimental value of 130◦. The
values of various parameters for boron oxide are also described
in [42]. The cutoff for the Coulombic interaction is 10.6 Å, and
for the short-range interaction between B–B, B–O and O–O is
3, 2 and 3 Å, respectively.

To simulate B2O3 glass, we started from the cesium
enneaborate (Cs2O·9B2O3) crystal structure [44], which has
both boroxol groups and triborate groups. After extracting
Cs2O and some BO3 triplets, a unit cell of 80 atoms is
obtained, which has 75% B atoms inside boroxol rings [45, 46].
MD simulations were carried out for 640-atom (256 B
and 384 O) and 2560-atom (1024 B and 1536 O) systems
with periodic boundary conditions to ascertain the absence
of system size effects. These systems were heated up to
2500 K and equilibrated for different time periods, up to
a nanosecond. Depending on the duration of equilibration,
different amounts of boroxol rings dissolve and thus we were
able to generate B2O3 melts with 75, 63 and 50 and 10% B

atoms in the boroxol rings, respectively. These liquids are
subsequently quenched at a rate of 2.5 K ps−1 and at constant
pressure of 0.1 MPa to get initial glass samples. Temperature
ramping was achieved by velocity rescaling, while the density
was adjusted according to the Anderson constant-pressure
algorithm [47]. Experiments show that the fraction of boroxol
rings increases with decreasing temperature [48]. However,
in MD simulations, no additional boroxol rings are generated
with decreasing temperature. Part of the reason for this is the
extremely high quench rate in MD simulations; the reactions
that would have taken place on experimental timescales are
simply suppressed. For systems with 10% to 75% boroxol
rings, the density at ambient conditions ranges from 1.75
to 1.81 g cm−3, respectively, very close to the experimental
value of 1.80 g cm−3 for B2O3 glass [5]. In figures 1(a)
and (b) we show that the total and partial structure factors
S(Q) of the sample with 63% boroxol rings, which, of all
simulated systems show the best agreement with experimental
data [9, 34, 43]. No remnants of the initial crystalline structure
were found in glasses so prepared. However, since B2O3

liquids with different boroxol rings were equilibrated at 2500 K
for different amounts of time before being quenched, the
simulated configurations remain to a varying degree removed
from equilibrium, the more so the higher the boroxol ring
concentration. So no attempt is made to establish the relation
between density and boroxol ring concentration of initial B2O3

glasses. Nevertheless, in this fashion B2O3 glasses with a wide
range of boroxol ring concentrations can be generated in MD
simulations, for which both density and structure factor closely
reproduce experimental data.

The simulated hydrostatic compression–decompression
cycles were carried out at 300 K by imposing pressures ranging
from 0 to 50 GPa. To this end, the target pressure was

3



J. Phys.: Condens. Matter 20 (2008) 075107 L Huang et al

gradually ramped at a rate of 0.05 GPa ps−1, while the system
volume was allowed to adjust according to the Anderson
constant-pressure algorithm. At intervals of 1 GPa, structures
were further relaxed for a duration of 20 ps and statistical
information was collected over 20 ps. The bulk modulus of
B2O3 glass was calculated directly from the equation of state
according to B = ρ(dP/dρ).

3. Results

The longitudinal and shear sound velocity as a function of
pressure were previously measured in our Brillouin scattering
experiments reported in [40]. In order to compare experimental
data directly with MD simulation results, we have two choices.
We can first convert the experimental sound velocities into
bulk moduli, which requires knowledge of the density of B2O3

glass at each pressure. Unfortunately, it was not possible to
determine this information in experiments with the required
accuracy while the sample is enclosed in the diamond anvil
cell. Alternatively, we can convert the simulated elastic moduli
into sound velocities. The disadvantage of this approach is that
we then end up comparing a composite quantity, given that the
sound velocity is proportional to the square root of the modulus
divided by the density. Such a comparison provides less
insight, because the sudden drop in sound velocities at 2–3 GPa
on decompression could be the result of a sudden change in
the modulus or in the density. The first situation would reflect
a second order transformation whereas the second situation
would correspond to a first order transformation. In other
words, the pressure dependence of the sound velocity does not
reveal the nature of this transition. For the analysis presented
here, we therefore pursue an approximate procedure for
estimating the lower-bound density changes in the experiment
and carry out a comparison on this basis.

From the pressure dependence of the longitudinal sound
velocity Vp and shear sound velocity Vs, we know:

Vp =
√

B + 4
3 G

ρ
, (1)

Vs =
√

G

ρ
, (2)

where B , G and ρ are the bulk modulus, shear modulus and
density, respectively. Eliminating the shear modulus, we get:

B = (V 2
p − 4

3 V 2
s )ρ = V 2ρ, (3)

where V 2 = V 2
p − 4

3 V 2
s . Assuming that V is the properly

reduced velocity of sound (i.e., a combination of longitudinal
and shear velocities), such that B = ρ

∂p
∂ρ

= V 2ρ, the pressure
dependence of the density then simplifies to:

∂p

∂ρ
= V 2, (4)

or

∂ρ = 1

V 2
∂p. (5)

This represents the situation at a particular density. As the
pressure changes, the density changes, and if it does so in
a monotonous fashion we can expand the pressure–density
relationship as a Taylor series,

ρ1 = ρ0 + ∂ρ0

∂p
(p1 − p0)+ 1

2

∂2ρ0

∂p2
(p1 − p0)

2 + O(�p3). (6)

Then taking the derivative of (6), we get:

∂ρ1

∂p
= ∂ρ0

∂p
+ ∂2ρ0

∂p2
(p1 − p0) + O(�p2), (7)

where ∂ρ0

∂p = 1
V 2

0
and ∂ρ1

∂p = 1
V 2

1
are known from experiments,

so we can solve for ∂2ρ0

∂p2 to yield:

∂2ρ0

∂p2
= 1

(p1 − p0)

(
∂ρ1

∂p
− ∂ρ0

∂p

)

= 1

(p1 − p0)

(
1

V 2
1

− 1

V 2
0

)
. (8)

Substituting (8) into (6) gives the corrected prediction of ρ1:

ρ1 = ρ0 + 1

V 2
0

(p1 − p0)

+ 1

2

1

(p1 − p0)

(
1

V 2
1

− 1

V 2
0

)
(p1 − p0)

2 + O(�p3)

= ρ0 + 1

2

(
1

V 2
1

+ 1

V 2
0

)
(p1 − p0) + O(�p3). (9)

Given the initial density ρ0, as well as V0, V1, p0 and p1 from
the sound velocity versus pressure curves in experiments, we
can obtain an estimate of the density and bulk modulus at each
pressure. These are only estimates because in this procedure
we ignore any amount of permanent densification, i.e., we
assume that all deformation is elastic and therefore reversible.
If permanent densification occurs, we underestimate the
density.

From MD simulations we directly calculate the density
and bulk modulus. We compare experimental and simulation
results in figure 2. Regardless of the boroxol ring
concentration, upon compression the density and bulk
modulus smoothly increase in MD simulations, and upon
decompression density and bulk modulus follow a different
path, remaining higher and exhibiting less of pressure
dependence. Upon decompression, the bulk modulus decreases
smoothly until a transition occurs at about 2–3 GPa, upon
which the bulk modulus returns to values followed during
compression. Correspondingly, a marked change in slope is
seen on the density curve at this pressure. In general terms
these trends echo those observed in experiments.

There are, however, some differences that require further
examination. For example, while a definite inflection around
3 GPa is apparent in the data, the drop in bulk modulus upon
decompressing simulated structures may not appear as abrupt
as the drop in sound velocity observed in experiments. Note
that even on the timescale of the experiments, the distinctness
of this drop in sound velocity depends on the decompression
rate. The drop is only sharp if several hours of relaxation,
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(a)

(b)

Figure 2. Comparison between MD simulated (samples with initially
10% and 63% boroxol rings at 300 K) and experimentally
determined properties of vitreous B2O3 as a function of pressure
during compression and decompression: (a) density; (b) bulk moduli.
The insets in each figure show the simulation results obtained using
an interaction potential that does not allow for boron to become
4-coordinated by oxygen. Squares with crosses inside indicate
interpolated data (see text).

typically half a day, is allowed between successive pressure
reductions; it is much more gradual if only minutes are
provided. Since such extensive relaxation periods are not
feasible in simulations, we cannot expect the transformation to
be as sharp in simulations as in experiments. Furthermore, the
density curves derived from experiments are shifted upwards
with respect to those in MD simulations. This can possibly be
attributed to several sources. We note that the experimental
data are sparse in the low-pressure regime. In fact, one
atmosphere velocities could not be measured on the actual
samples compressed in the diamond cell. After mounting
the glass sample in between the diamonds, the pressure in
the anvil was already at 7.8 GPa, so that the first value

of the sound velocity for this sample was measured at this
pressure. Thus, the ambient pressure sound velocity had to be
obtained from a different sample outside of the diamond anvil
cell. It is therefore possible that, given somewhat different
preparation histories, the ambient pressure sound velocity is
lower than that of the sample that was used for the compression
experiment. Low sound velocity means high compressibility
and elastic volume change. Combined with the large first
pressure increment, this would indeed result in a large initial
error in the extrapolation procedure based on equation (9), and
explain the systematic but virtually constant overestimation of
the density. This argument is supported by the fact that beyond
this initial stage, the density curves during compression and
decompression in MD simulations are approximately parallel
to their counterparts in experiments. To ameliorate the density
overestimation, we generated velocity data in between zero and
7.8 GPa through interpolation. To this end we fitted the sound
velocity versus pressure data over the entire pressure range
using a polynomial. Sound velocity values were then evaluated
from this polynomial for the desired pressure values (squares
with open crosses in figure 2), thus achieving a discretization
�p sufficiently small to mitigate the error introduced by the
procedure based on equation (9).

Upon computing the density change over a complete
compression–decompression cycle of the experimental speci-
men, we find a permanent densification of about 20% at 1 bar
for the recovered glass. Considering that the numerical pro-
cedure used to obtain this result actually neglects any non-
elastic volume change, this represents the most conservative
estimate of permanent densification. In reality it might actually
be larger. Our simulations yield about 14% of residual den-
sification, somewhat smaller, probably because of the limited
time afforded by simulations for the structures to equilibrate
while under pressure. At this point we can conclude that B2O3

glass undergoes irreversible structural changes upon compres-
sion that lead to a denser glass, unless a spontaneous spring-
back of the specimen’s volume occurred during the transition
at which the sound velocities dropped. As shown in figure 2,
MD simulations give us no such indication—they rather indi-
cate that it is the elastic modulus that changes discontinuously,
which makes this a second order transformation according to
the Ehrenfest scheme.

4. Discussion

Based on the qualitative agreement between the pressure
dependence of the modulus in experiment and simulation we
can conclude that the key structural rearrangements in B2O3

glass under pressure are reproduced in our MD simulations.
The analysis of the pertinent developments in our simulated
structures is summarized in the following. Figure 3 shows
that in B2O3 glass at ambient pressure boron is entirely
three-coordinated, above 10 GPa an increasing number of
boron is continuously converted to four-coordination upon
densification. This is in good qualitative agreement with a very
recent inelastic x-ray scattering study of vitreous B2O3 under
pressure [41]. At the same time, the boroxol rings disintegrate,
as shown in figure 4, which explains the disappearance of
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Figure 3. Percentage of 4-coordinated boron atoms as a function of
pressure during the compression and decompression cycle at 300 K.

the 808 cm−1 Raman line of the boroxol ring breathing
mode under pressure in figure 5(a). Upon decompression,
the percentage of four-coordinated boron follows the same
path as during compression at very high pressures; then
deviates from that path and maintains a higher value until
the pressure reaches 16 GPa, and finally it returns to the
compression curve. The continuous coordination conversion
under pressure can be understood in terms of the structural
disorder associated with the amorphous state of matter. Due
to the fluctuations in the local stress fields, the coordination
conversion occurs first at locations of highest stress intensity.
Such a conversion to a more compact state relieves stress in
the immediate surroundings, and subsequent transitions require
further compression. This explains why the global properties
of the glass structure only change gradually as a function of
pressure. The gradual conversion of BO3 triangles into denser

(a)

(c)

(b)

(d)

Figure 4. (a)–(d) show the disintegration of boroxol rings and the
change of the coordination of boron from 3 to 4 upon increasing the
pressure. (Small atoms are boron, the large ones are oxygen.)

BO4 tetrahedra under pressure eventually eliminates most of
the free volume in B2O3 glass [41, 49]. This densification is
non-elastic, so that upon decompression it is improbable that
the material would follow the same path of structural evolution
as on compression. In fact, by entering into a state that includes
BO4 units at high pressures, the boron atoms easily end up

(a) (b)

Figure 5. Stacked B2O3 Raman spectra during the experimental compression and decompression cycles. Raman spectra during compression
(a) and decompression (b). The peak at 760 cm−1 is fluorescence from the diamond anvils, the peak at 812 cm−1 is the pressure-shifted
boroxol ring mode, and the peak at 881 cm−1 is a previously unidentified Raman peak. The baseline of each spectrum has been shifted by an
amount equal to 100 times the pressure at which the spectrum was collected. The number to the right of each spectrum is the pressure at
which it was collected.
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being bonded to completely different neighbors upon reversal
of this coordination change. The structure of the recovered
glass may have different ring size and ring shape. For example,
while the re-emergence of the 808 cm−1 peak, albeit shifted
to 812 cm−1, suggests the recovery of boroxol rings, the new
peak at 881 cm−1 could be attributed to trigonal B–(OH)3

units [40] or to dipentaborate-like units [50, 51] that form upon
decompression. Similar to experimental observations [41, 49],
our study shows that there are no four-coordinated boron
atoms in permanently densified B2O3 glass at one atmosphere.
In other words, while under pressure B2O3 glass undergoes
a reversible coordination transformation that results in an
irreversible densification once pressure is released.

Unfortunately, it is not exactly known at what pressure
the coordination conversion takes place during decompression
in experiments [41]. If it is fully responsible for the sharp
transition near 2–3 GPa upon decompression in experiments,
then the coordination conversion in MD simulations occurs
at higher pressure than in experiments. While we cannot
completely exclude other reasons for this sharp transition at
this moment, by argument of elimination our MD simulations
do show that the coordination conversion under pressure plays
a crucial role in polyamorphic transitions in B2O3 glass. Insets
in figures 2(a) and (b) show that when using a three-body
potential that does not allow for a coordination change, no
permanent densification takes place even at 1000 K upon
releasing from a maximum pressure of 60 GPa. The bulk
modulus curves overlap with each other on compression and
decompression, which is completely different from what is
observed in experiments at 300 K. The above observations
show that the polyamorphic transitions in three-coordinated
B2O3 glass involve transitory four-coordinated boron atoms at
high pressures, while coordination change is not necessary for
compaction of four-coordinated silica glass. This may be true
for all three-coordinated glasses and four-coordinated glasses,
respectively.

Despite going through a coordination change under
pressure, the short- and intermediate-range structure in
permanently densified three-coordinated glass evolves in a
fashion comparable to that of four-coordinated glasses. Similar
to what we observed in silica glass [35, 36], not much change
is seen between the short-range order of the recovered and
original B2O3 glass, as revealed by the radial distribution
functions, bond angle distributions as well as coordination
states, which is consistent with the experimental findings of
Wright et al [43]. The uniqueness of the short-range order
in the densified glass was further verified in our experiments
by the fact that we could loop the sound velocity versus
pressure cycle multiple times. However, the intermediate-
range order is substantially more affected by pressure-induced
structural modifications than the short-range order, which is
manifest in the ring size distribution in the initial and recovered
glass in figure 6. The number of large rings increases
significantly in the densified structure in comparison to the
original glass. In vitreous B2O3, this is accomplished by going
through the transient four-coordinated states at high pressures,
while in silica glass it is simply achieved by swapping
neighbors without the involvement of the high-coordinated

Figure 6. Ring size distribution in original and recovered
B2O3 glass.

states. Nevertheless, the increase of large rings facilitates the
permanent densification in both systems.

Our simulations show that the concentration of boroxol
rings has a relatively small effect on the magnitude and
pressure dependence of density and bulk modulus of the
simulated glasses. The density of as-quenched glasses vary
depending on the time allowed for equilibration at high
temperatures. However, this difference diminishes quickly
upon compression, partly due to the different compliances
of these structures and, more significantly, because boroxol
rings disintegrate with increasing pressure. The influence
of boroxol rings on the elastic properties is even less
pronounced. These small rings appear to contribute little to
the overall load bearing capacity of the network, and once
they disintegrate upon compression, the network approaches
a similar topology independent of the starting concentration
of boroxol rings. Note that in our simulations, boroxol
rings disintegrate rather precipitously once pressure exceeds
about 8–10 GPa. Figure 6 also shows that in simulations
boroxol rings cannot regenerate during decompression, which
is different from the experimental observation that at the
completion of the transition near 2 GPa, the 808 cm−1

boroxol ring mode suddenly reappears during decompression,
indicating the reformation of boroxol rings in the recovered
glass in figure 5(b). This, we believe, is partially because the
simulated glass is not relaxed on the experimental timescale.
Wright et al [43] have shown that B2O3 glass can relax
at ambient conditions, and it takes days for the fraction of
boroxol rings to return to its original value after pressurization.
In future work, the forces necessary to account for the
6.4 kcal mol−1 boroxol ring stabilization energy observed by
Walrafen et al [52] may have to be included explicitly in the
interaction model, in order to easily generate boroxol rings in
initial and recovered B2O3 glass.

5. Conclusions

Using the newly developed coordination-dependent charge
transfer potential, we observed polyamorphic transitions in
vitreous boron oxide under pressure in MD simulations that
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correspond well to those observed in Brillouin scattering
experiments. Our MD simulations show that a transient
coordination conversion is requisite to achieve a pressure-
induced permanent densification of three-coordinated B2O3

glass, while this is not necessary for the irreversible
compaction of four-coordinated silica glass. The boroxol
rings in simulated vitreous B2O3 break up when subject to
pressure, which is in accordance with the disappearance of the
breathing mode in the experimental Raman spectrum of B2O3

glass under pressure. While boroxol rings do not regenerate
upon pressure release on the short timescales characteristic of
MD simulations, an overall shift of the ring size distribution
towards larger rings characterizes the structural changes in the
permanently densified B2O3 glass, which in experiments are
evident through a new peak in the Raman spectrum. The
sudden drop in the sound velocities observed in experiment is
likely the signature of a second order structural transition.
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