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Thank you for taking me home !
My eyes are completely open 
now !  I understand the glass 
transition very well !!!!



super cooled liquid line ( equilibrium)

glass line
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First Let’s Review



 

dTf

dt
=

Tf − T
τ

Tool’s eq.
 

p T ,t( )= pV T( )+ ps T ,t( )

 

p T( )= peq T0( )+αL Tf − T0( )+αg T − Tf( )

We used 
these three 
equation. 
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Tf 0( )= T1

 

Tf ∞( )= T2
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τ = Kη = τ oe
− AT where η0 and A are constants.

Tool quickly realized that this did not account for the data.  He postulated that η must 
depend on the Fictive temperature Tf. 

If a liquid were cooled quickly, it would have a larger Tf than a slower cooled liquid.  This 
larger Tf would correspond to a more “open” structure which would reduce the η.  If  the 
liquid were cooled slower, then the Tf would be smaller and the structure is “closer” 
together and would have a larger η.  To account for this, Tool (1946) assumed that a 
better choice of η would be

 

η = η0e
− A1T +A2T f( )

where η0 and A1 and A2 are constants.

 

τ = τ 0e
− A1T +A2T f( )

Tool’s equation becomes

 

dTf

dt
=

Tf −T
τ 0

 

 
 

 

 
 e

A1T +A2T f( )

Initially Tool used

As clever as Tool’s equation is, it can not account for the cross over experiments of 
Ritland.  The reason for this lack of agreement is the single relaxation time.



Thermorheological Simplicity 

Define the relaxation response at a temperature T as 

 

R ≡
p T ,t( )− p T ,∞( )
p T ,0( )− p T ,∞( )

The range of R is 1 to 0, i.e. if t = 0, R = 1 and if t = ∞, R = 
0.

The response R can typically be described by the stretched exponential 

 

R = e
− t

τexp

 

 
  

 

 
  

b

≈ an
n =1

N

∑ e
− t

τn

where τexp is an experimentally determined parameter,  0 < b < 1.  Stretched 
exponentials can be approximated by the Prony series where the an’s sum to 1.

If all the τn’s have the same mathematical dependence on temperature then TRS 
results.  To see this, rewrite the τn R in the Prony series as τ/λn so R becomes

 

R = an
n =1

N

∑ e
−

λnt
τ = an

n =1

N

∑ e− λnβ

 

t
τ

≡ βwhere



If the R for a system were measured at any value of T and then graphed as R vs. β, all of the R’s 
at various T’s would lie on top of one another, i.e. there would be one Master graph.   

T1 T2 T3

log t

R For any T

Log β

R

Since there is one Master graph of R, define a reference temperature Tr at which the Master 
graph would be measured.  Call the time associated with this reference temperature ξ .  Since 
the same graph would result at any temperature T, we can conclude that

 

β = ξ
τ r

= t
τ

or more simply

 

ξ = τ r

τ
t where ξ is called the reduced time.



 

R t,T( )= R ξ,Tr( )

 

R = an
n =1

N

∑ e
−

λnt
τ = an

n =1

N

∑ e− λnβ = an
n =1

N

∑ e
− λn

ξ
τ r

We can view ξ in the following way.  If a system relaxes by some amount at temperature T in a 
time t, ξ is the time that is needed for the system to relax the same amount at temperature Tr, 
i.e.  

How can we extend this to temperature changes ?



 

M p t( )≡
p T2 ,t( )− p T2 ,∞( )
p T2 ,0( )− p T2 ,∞( )

M has the same range as R, i.e. t = 0, Mp = 1 and if t = ∞, Mp = 0.
 

T1

 

T2

Defining a new response function  for T changes

 

p T( )= peq T( )+αs Tf − T( )= p T1( )+αL T − T1( )+α s Tf − T( )Using

And the conditions: t = 0, Tf(0) = T1 and  Tf(∞) = T2 Mp we becomes

 

M p t( )=
Tf t( )−T2

T1 −T2



 

p T2 ,ξ( )= p T2 ,∞( )− αs∆TM p ξ( )

 

Tf ξ( )− T2 = −M p ξ( )∆T

 

p T ,t( )= peq T( )+α s Tf t( )− T( )

 

p T ,ξ( )= peq T( )+α s Tf ξ( )− T( )

 

M p t( )=
Tf t( )− T2

T1 − T2

Mp in terms of the reduced time ξ 

dξ = τ r

τ T t( )[ ]
dt Integrating this from 0 to t  yields

 

ξ = τ r

τ T t'( )[ ]0

t

∫ dt '= τ r

dt'
τ T t '( )[ ]0

t

∫

 

M p ξ( )=
Tf ξ( )− T2

T1 − T2

Narayanaswamy assumed that Mp(t) obeys TRS !  How ?

While



Episode III: Revenge of the ξ

 

p T2 ,ξ( )= p T2 ,∞( )− αs∆TM p ξ( )

To complete the derivation, imagine that the temperature is changed from 
some initial value of To to some final value T in a series of N steps, i.e.

 

T = T0 + ∆T1 + ∆T2 + ...+ ∆TN = T0 + ∆Ti
i=1

N

∑

∆T1

∆T2

∆T3

T0

t1 t2 t3

How can be extend Tf(ξ) and p(T,ξ) to 
multiple temperature steps ?

 

p T ,ξ( )= p T ,∞( )− αs∆T1M p ξ − ξ1( )+ ...− α s∆TN M p ξ − ξN( )

p T ,ξ( )= p T ,∞( )− αs∆TiM p ξ − ξ i( )
i=1

N

∑



 

p T ,ξ( )= p T ,∞( )− αsM p ξ − ξ '( )
0

ξ

∫
dT
dξ '

dξ '

Using the chain rule and 
rewriting ∆Ti in terms of ξ
yields

 

p T ,ξ( )= p T ,∞( )− αs∆TiM p ξ − ξ i( )
i=1

N

∑

p T ,ξ( )= p T ,∞( )− αsM p ξ − ξ i( )
i=1

N

∑
∆T ξ( )

∆ξ i

∆ξ i

 

∆Ti =
∆T ξ( )

∆ξ i

∆ξ i → dT = dT
dξ

dξ



Likewise, the equation for fictive temperature becomes

 

Tf ξ( )− T2 = −M p ξ( )∆T

 

Tf = T − ∆TiM p ξ − ξ i( )
i=1

N

∑

Tf = T − M p ξ − ξ i( )
i=1

N

∑
∆T ξ( )

∆ξ i

∆ξ i

 

Tf = T − M p ξ − ξ '( )
0

ξ

∫
dT
dξ '

dξ '



Recall in the last lecture, we stated that the fundamental flaw in Tool’s equation is that it 
only has one relaxation time.  Let’s pretend that Mp(ξ) is given by only one relaxation time, 
i.e. 

 

M p ξ( )= e
− ξ

τ r

 

Tf = T − M p ξ − ξ '( )
0

ξ

∫
dT
dξ '

dξ '= T − e
−

ξ −ξ '( )
τ r

0

ξ

∫
dT
dξ '

dξ '

or

T − Tf = e
−

ξ −ξ '( )
τ r

0

ξ

∫
dT
dξ '

dξ '

Substituting this M into Narayanaswamy’s equation for the evolution of Tf yields

Taking the derivative with respect to ξ gives

 

dTf

dξ
= 1

τ r

e
−

ξ −ξ '( )
τ r

dT
dξ '0

ξ

∫ dξ '

 

dTf

dξ
=

T − Tf

τ r

Tool’s eq.



What did Narayanaswamy use for τ ?

 

τ p = τ 0 exp x∆H
RT

+
1− x( )∆H

RTf

 

 
 

 

 
 

Arrhenius term A Tf dependence just like Tool !

 

p T ,ξ( )= p T ,∞( )− αsM p ξ − ξ '( )
0

ξ

∫
dT
dξ '

dξ '

The Tool-Narayanaswamy-Moynihan equations are

and

 

Tf = T − M p ξ − ξ '( )
0

ξ

∫
dT
dξ '

dξ '

and some form for tp such as

 

τ p = τ 0 exp x∆H
RT

+
1− x( )∆H

RTf

 

 
 

 

 
 

where 0 < x < 1



DSC: Differential Scanning Calorimetry as a “Black Box”.  By a “black box”,  I 
mean 1) what are the inputs and 2) what is the output.  Ignore the details of 
how the apparatus works.

DSC

Unknown sample

 

T t( ) i.e. dT
dt

A given T vs. t is specified

The output is the Q vs. t 
required to produce the 
specified T vs. t 

Q t( ) i.e. dQ
dt

The ratio of the output to 
input is

 

dQ
dt
dT
dt

= dQ
dT

= Cp



How does a DSC work ? The “philosophy” of the device. 

X Al

thermocouple

A  given ∆V corresponds to a ∆T

∆V

TknownTunknown

∆V

 

∆Q = IAl∆VAldt
∆Q = mAlcAl∆TAl

 

∆Q = IX ∆VX dt ∝ ∆TX

 

IAl

 

IX

Feedback mechanism.  If the ∆V 
doesn’t correspond to the correct ∆T, 
the IX is changed.

 

∆Q
∆t

output

input

 

∆T
∆t

sample





The Empty Al pan 
acts as the reference 
sample

Sealed Al pans containing the samples



Pans go in here





Before we explain how to measure Tf and Tg using a DSC, lets first examine some 
typical Cp vs T results 

A) Cp vs. T for a linear cooled liquid
i.e. a “down scan”

Ti

Tf

t

T

H

 

αg = αV = dH
dT

= Cp

g < CP

L

 

αL = αV +αS = dH
dT

= CP

L

T

2 13 123

 

CP

L

 

CP

g



B)  Linear heating a glass that was linearly cooled i.e. an “ up scan”

Ti

Tf

t
T

H

T

21 4

 

CP

L

 

CP

g

3

As the glass is relaxing toward the super 
cooled equilibrium line, heat is given off i.e. 
H is decreasing so this region is exothermic.



C)  A liquid cooled by a down quench

Ti=Tf

Tfinal

t

H

2 1

 

CP

L

 

CP

g

Ti=TfTfinal

12

Tfinal Ti=Tf



D)  A linear up scan on an annealed glass

Ti

t

T

H

Tf

Tg

 

CP

L

 

CP

g



What information does a Cp vs T graph provide ?

Recall that

 

Cp = dH
dT

 

CpdT = dH

Cp
T1

T2

∫ dT = dH
T1

T2

∫ = H 2 − H1 = ∆H

How can we use this to find Tf and Tg ?  For example, how do you measure the Tf and 
Tg of a quenched glass ?    

If the system is a glass T1 and a liquid at T2, then ∆H = HL-Hg.



1)  Make a glass and quench it.  The cooling rate and Tf are unknown. What is the Tf of this 
quenched glass ?  

2)  Place a sample of the quenched glass into a DSC and heat the sample up to the liquid 
state at some fixed linear rate say 200C/min or 100C/min.  Call the Cp for this first “upscan” 
Cp

1.  

3)  Cool the liquid at the the same linear rate, i.e. say 200C/min, to room temperature. 

4) Reheat the cooled glass sample using at the same linear rate of 200C/min back up to the 
liquid state.  Call the Cp for this second “upscan” Cp

2 . The graph for  Cp
2 will not have a 

severe of a “dip” since the glass has relaxed. 

5) Graph of Cp
1 and Cp

2 vs. T curves.

Yuanzheng Yue’s Enthalpy-Matching Method



 

Tf

 

Tf

t

H

upscan 1  

upscan 2  



 

A ≡ Cp

2 − CP

1( )
Tc

Tg

∫ dT

Applying Yue’s technique is easy in practice.  We’ll set it up in steps.  Why the 
technique works requires more effort.  I’ll explain what to do first before I give the 
explanation.

First, calculate the integral Clearly, this is just the area 
between the second and first 
upscans.

 

Cp

1

 

Cp

2

 

Cp

 

Tc

 

Te

This “dip” will deepen if Tf is higher 
since the glass will relax more on 
the first upscan.

Cp
2 is insensitive to Tf

since the glass was 
brought to the liquid 
state on the first 
upscan.



 

Cp

1

 

Cp

2

 

Cp

 

Cp ,L

 

Cp ,g

 

TG

 

Tf

 

Tc

 

B ≡ Cp ,L − CP ,g( )
Tg

T f

∫ dTSecond, calculate the integral

The CP,g is the CP curve for the glass.  It is found by extrapolating the CP
2 curve

before Tg.  To extrapolate the CP,g curve use the following fit

 

Cp ,g = a + bT + c
T 2

+ d
T 0.5

where the a, b, c and d are constants that 
must be determined experimentally 

TG is given by the following 
method. Find the inflection 
point on the CP

2 curve and 
draw a tangent.  The T at 
which it intercepts CP,g is Tg.

B is the area of this 
trapezoid



It turns out that integrals A and B are equal  

 

A = B

CP

2 − CP

1( )
Tc

Te

∫ dT = CP ,L − CP ,g( )
Tg

T f

∫ dT

To find Tf, change the upper limit in the right integral until the two integrals are equal.  
When they equal, that value is Tf !

WHY ????



To understand why these two integrals are equal, let’s examine each integral 
separately. Start with B.

 

B ≡ CP ,L − CP ,g( )
Tg

T f

∫ dT Recall from previous lectures that αp - αg= αs where  αP = CP
and  αg = Cg in our case.  The structure/configuartion of the 
liquid that is quenched will change from Tf to the Tg.  Past Tg
the relax times are too large for any appreciatable relaxation 
to occur.  Above Tf the liquid is still in equilibrium.

Further,  ∆H = ∆E + p∆V and most of ∆H comes from ∆E since ∆V is small compared so 

B ≡ CP ,SdT = ∆Hstructure
Tg

T f

∫

 

∆Hstructure ≅ ∆Estructure



Now let’s consider the left integral A.

 

A ≡ Cp

2 − CP

1( )
Tc

Te

∫ dT
Below Tc both Cp

1 and CP
2 are identical. Recall that the slopes of p vs 

T graphs for low T were all identical !  Above Te, both Cp
1 and CP

2 are 
identical since they are in the both liquids.

The vibrational contributional to Cp
1 and Cp

2 are identical at a given T. Therefore, the 
vibrational contributions cancel and all that is left is the contribution from structural 
changes. Note that if the upper limit of this integral was extended to Tf, the integral would 
not since Cp

1 = CP
2 in the liquid region.

Therefore, A is also equal to ∆Hstructure.

∴ A = B Yue is very clever !

This is an active area of work !!!!!!!
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