Optical and Photonic Glasses

Lecture 6: Structures of Glass II – Glass Families

Professor Rui Almeida

International Materials Institute For New Functionality in Glass Lehigh University

Designations for **modified silicate glasses**

Example of alkaline-earth silicates (MO.SiO₂, in mol%):

	example	designation 1	net. dimens.	# BO/tetr.	symbol
$0\% MO \rightarrow$	SiO ₂	(silica)	3-D	(4 BO/tetr.)	Q ₄
$33 \% MO \rightarrow$	CaO.2 SiO ₂	(disilicate)	2-D	(3 BO/tetr.)	Q ₃
$50 \% MO \rightarrow$	CaO.SiO ₂	(metasilicate)	1-D	(2 BO/tetr.)	Q ₂
$60 \% MO \rightarrow$	3 CaO.2 SiO ₂	(pyrosilicate)	dimers	(1 BO/tetr.)	Q ₁
$66 \% MO \rightarrow$	2 CaO.SiO ₂	(orthosilicate)	monomers	(0 BO/tetr.)	Q _o

Modified silicate glasses

A) Fraction of NBO atoms (f_{NBO})

molar basis: 20 Na₂O.80 SiO₂ = Na₂Si₄O₉

 $1 \text{ Na}^+ \implies 1 \text{ NBO}^-$ (1 Ca²⁺ $\implies 2 \text{ NBO}^-$)

 $f_{\rm NBO} = 2/9 = 22\%$ (0.22)

B) Average number, y, of corners shared, or BO, per tetrahedron (for particular compositions, this coincides with the subscript n in Q_n symbols):

 $y = 6 - (200 / mol\% SiO_2)$ (only for tetrahedral silicates)

<u>Example</u>: in a *disilicate* glass, the basic structural unit is a Q_3 "tetrahedron" (strictly speaking, a trigonal pyramid, where the Si-O⁻ bond is shorter than in Si-O-Si bonds), possessing (3 BO + 1 NBO) species and a total of 2.5 (net) oxygen atoms. Hence its chemical formula:

 $Na_2O.2 SiO_2 = Na_2Si_2O_5$ where O/Si = 5/2 = 2.5

Spring 2005

This is a 2-D representation of the *modified random network* model of G.N. Greaves at al. (The structure of Non-Crystalline Materials, Taylor & Francis, 1983) for a modified silicate glass

- Si
- Na
- 0 0

In this model, there are **channels** along which the **modifier ions** (Na⁺, in this case) are preferentially located, corresponding to a certain extent of *phase separation* in the modified glass.

Alkali aluminosilicate glasses: 4- and 6-fold coordinated Al

Al₂O₃ / M₂O < 1 => CN_{Al} = 4 (excess negative charge of [AlO₄] group satisfied by M⁺ ion) Al₂O₃ / M₂O = 1 => CN_{Al} = 4 (network **former**) and no NBO present (adding one Al³⁺ to an alkali silicate removes one NBO) Al_2O_3 / M₂O > 1 => excess Al³⁺ = 0 are **modifiers**, with CN_{Al} = 6

(Presumably, a modifying Al³⁺ ion, with octahedral coordination, will have its charge compensated by 3 singly charged NBO ions).

Suggested structure of an alkali aluminosilicate glass with Al^{3+} as a network modifier showing octahedrally coordinated Al^{3+} .

A|3+

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Alkali aluminosilicate glasses: 4-fold coordinated Al even for Al₂O₃ / M₂O > 1

Tetrahedrally coordinated Al³⁺ in tricluster arrangements (a) and (b) according to Lacy. Note that (c) is equivalent to (a). (E.D. Lacy, 1963)

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

X-ray photoemission (or photoelectron) spectroscopy (XPS)

XPS is one of the best available experimental tools for the identification and quantitative determination of NBO species in oxide glasses.

Photoelectron: BE = hv - KE (e.g., O_{1s} : $BE \sim 532 \text{ eV}$)

De-excitation energy: (1) X-ray photon (XRF); (2) secondary Auger electron (KLL), leaving a doubly positively charged oxygen ion.

Spring 2005

Lecture 6

High resolution O1s XPS spectra of silica and sodium silicate glasses. (The areas under the low and high BE peaks, separated by $\sim 2 \text{ eV}$, are proportional to the NBO/BO atomic ratio).

(Adapted from: R. Bruckner et al., Jap. J. Appl. Phys., 1978)

Spring 2005

Lecture 6

(Adapted from: B.M.J. Smets and T.P.A. Lommen, J. Non-Cryst. Solids, 1981)

Lecture 6

XPS may be applied to non-oxide glasses as well. E.g., ZrF_4 -based glasses have *bridging* and *non-bridging* fluorine ions, but with a smaller difference in BE.

Spring 2005

Lead silicate and lead borate glasses may contain more than 90 weight% PbO. In such glasses, it is believed that Pb^{2+} cations assume a network-forming role, either coordinated by two oxygen ions (fig. (a)) or by four, forming $[PbO_4]$ pyramids (fig. (b)).

Structure of lead silicate glasses showing (a) two-coordinated Pb, (b) tetrahedrally coordinated Pb. (After Mydler *et al.* [22]. Redrawn with permission of the Society of Glass Technology.)

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 6

The structure of pure B_2O_3 glass, as evidenced from detailed NMR and Raman spectroscopy studies and confirmed by XRD, appears to have the so-called *boroxol* ring as the fundamental structural unit, formed by three B atoms, each surrounded by three nearest neighbor BO atoms.

Configuration of the boroxol ring.

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

As a modifier such as Na_2O is progressively added to B_2O_3 , an increasing number of B atoms go into tetrahedral rather than triangular coordination. This has significant consequences, in particular a clear minimum in the thermal expansion coefficient vs. $[Na_2O]$ curve, usually designated as the *boron oxide anomaly*.

Spring 2005

 P_2O_5 is a glass-forming compound. The coordination of P in pure P_2O_5 glass is believed to be similar to that found in PO₄ and P_4O_{10} molecules (figs. (a) and (b)), consisting of three single bonds and a double P=O bond. This has a special type of NBO, corresponding to a terminal bond shorter than a normal P-O⁻ terminal bond.

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 6

One well known type of modified phosphate glass is the *metaphosphate* glass composition, where the basic structural units are chains. In the case of sodium metaphosphate (NaPO₃) glass, the structural unit may be represented as follows:

$$\begin{array}{cccccc}
 O^{-} \operatorname{Na}^{+} & O \\
 & \parallel & \parallel \\
 - O - P - O - P - O - \\
 & \parallel & \parallel \\
 O & \operatorname{Na}^{+} O^{-}
\end{array}$$

The out-of-chain P-O bonds have a character in-between a single and a double bond. Alternatively, this situation might be depicted by means of a regular single P-O⁻ bond and double P=O bond on opposite sides of each P atom. The figure includes examples of both descriptions.

Halide glasses such as the ZrF_4 -based ones are more ionic than oxide glasses and the network-forming cation, Zr^{4+} , has higher coordinations than those predicted by Zachariasen's rules (CN_{Zr} has been found to be between ~ 6 - 8).

Chain-like skeleton in the structure of a ZBLAN_{6.6} glass (57.0 ZrF_4 -28.1 BaF_2 -3.3 LaF_3 -5.0 AlF_3 -6.6 NaF, in mol%).

(Adapted from: M.C. Goncalves and R.M. Almeida, Mat. Res. Bull. 31 (1996) 573)

Lecture 6