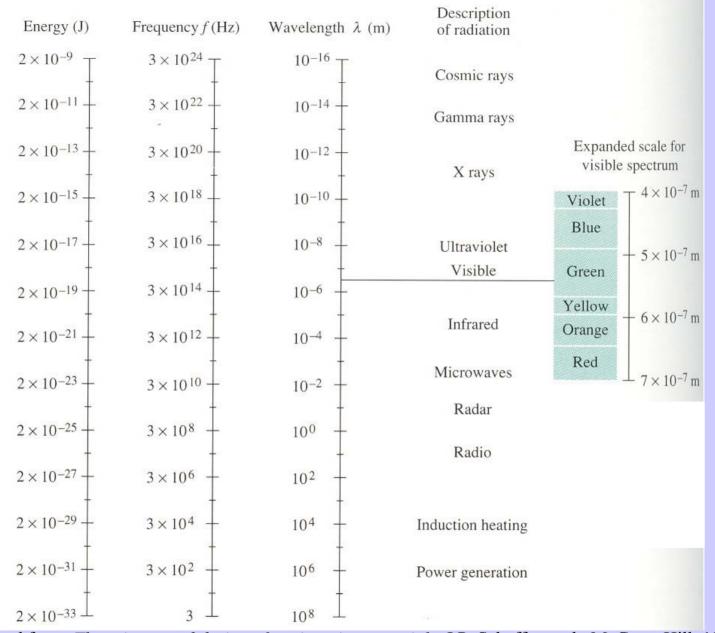
Optical and Photonic Glasses

Lecture 13:

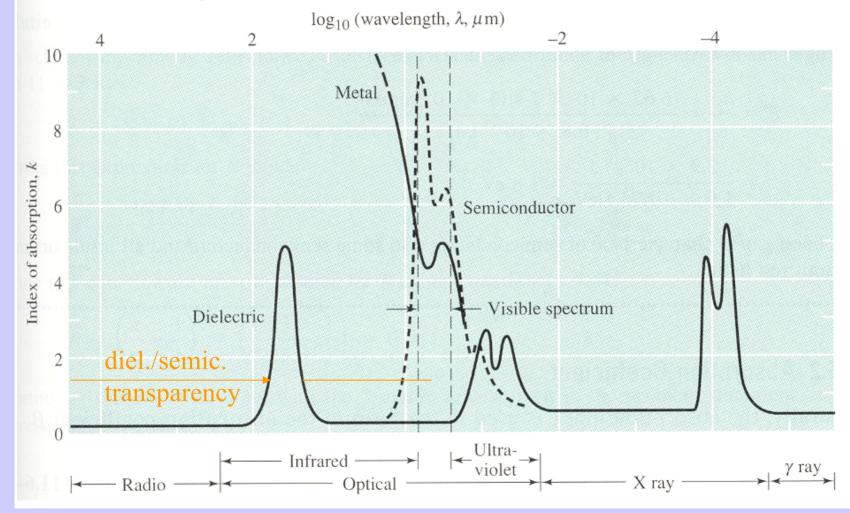
Optical Glasses – Absorption, Refraction and Dispersion

Professor Rui Almeida

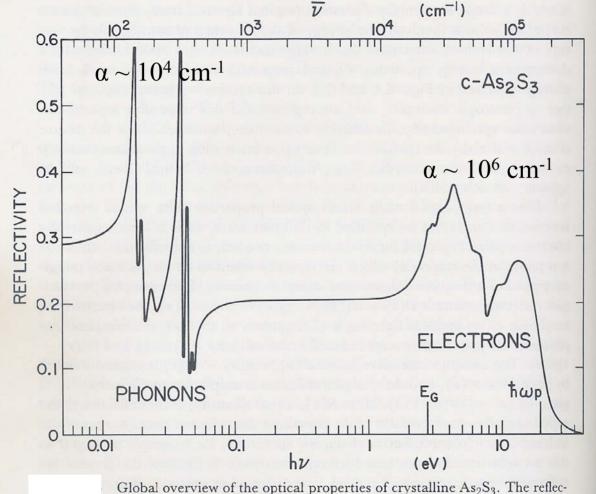
International Materials Institute For New Functionality in Glass Lehigh University


OPTICAL PROPERTIES

The optical behavior of glass, like that of any other material, is the result of the interaction between the electromagnetic radiation and the electrons or nuclei of the constituent atoms or ions.


In the *optical* region of the *electromagnetic spectrum*, **ultra-violet** (UV) radiation $(\lambda \le 400 \text{ nm})$ and **visible** radiation $(\lambda \sim 400\text{-}700 \text{ nm})$ usually interact with the *electronic* energy levels, whereas **infrared** (IR) radiation $(\lambda \ge 700 \text{ nm})$ interacts with the atomic nuclei.

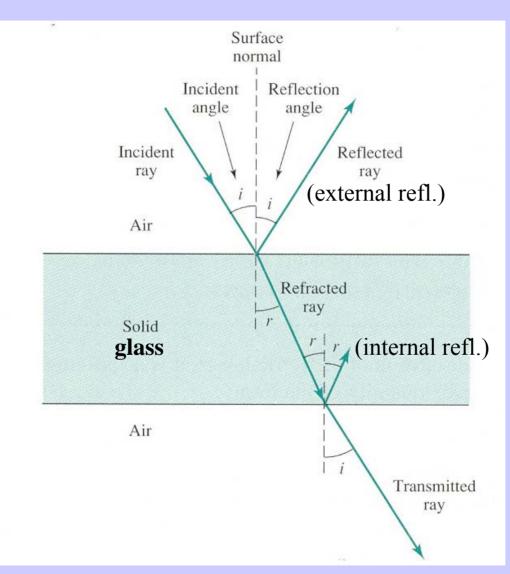
The optical properties considered below include refraction and the refractive index plus its dispersion, reflection (and interference), electronic absorption, infrared absorption (and reflection), Raman scattering and conventional (elastic) light scattering.


Electromagnetic radiation spectrum

(Adapted from: *The science and design of engineering materials*, J.P. Schaffer et al., McGraw-Hill, 1999) Spring 2005 Lecture 13 Rui M. Almeida Example of *absorption* of different materials as a function of the energy of the electromagnetic radiation ($E = hc/\lambda$). Radio waves, e.g., are transmitted by dielectric materials like building walls, because the small photon energies cannot cause neither band-to- band electronic transitions, nor vibrational ones. A wall made of metal, however, with weakly bound electrons, would absorb such waves.

(Adapted from: *The science and design of engineering materials*, J.P. Schaffer et al., McGraw-Hill, 1999) Spring 2005 Lecture 13 Rui M. Almeida Example of the optical *reflection* of $c-As_2S_3$ (a glass former) between 50 eV and 5 meV (70 nm to 40 cm⁻¹; $\lambda v = c$). Between ~ 20 eV and E_G (~ 3 eV), the electrons are excited from the valence to the conduction bands. Below ~ 100 meV (or 1000 cm⁻¹), the electric field oscillations become slow enough for the lattice vibrations to respond to them.

tivity is shown for one light polarization over a range of photon energies from the far infrared to the far ultraviolet. (Zallen and Blossey, 1976).


(Adapted from: The Physics of Amorphous Solids, R. Zallen, John Wiley, 1983) Lecture 13

Rui M. Almeida

Spring 2005

Refraction and **reflection**

(absorption neglected at this stage)

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

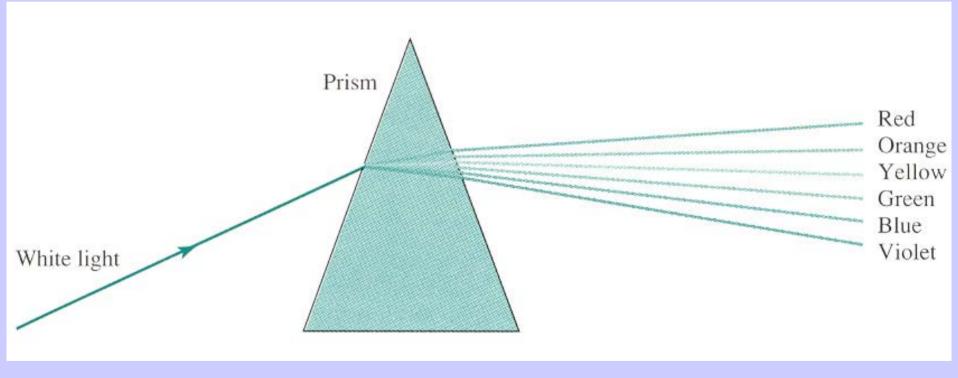
Spring 2005

Lecture 13

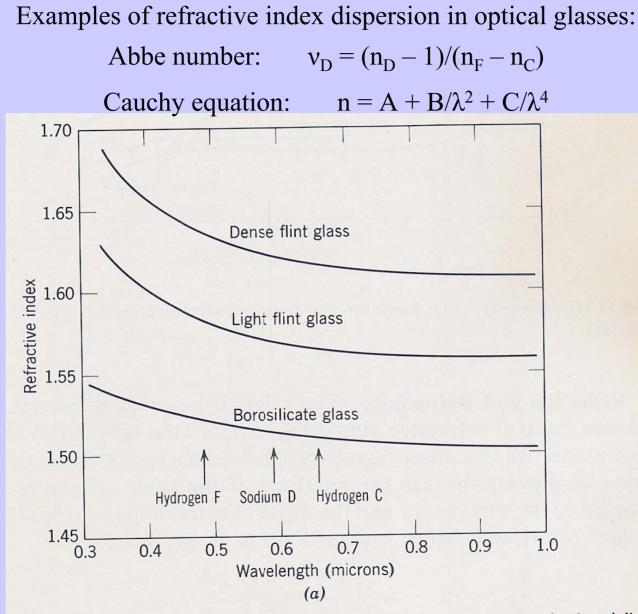
Refraction in terms of geometrical optics: Snell's law

	Refractive indices	of materials. n≥1
$[(n^2-1)/(n^2+2)]$ V _M = N ₀ α_t	Material	Average refractive index
	Air	1.00
$n = \frac{v_{\rm vac}}{v_{\rm mat}}$	Water	1.33
	Ice	1.31
	Ceramics	
	Diamond	2.43
	Al ₂ O ₃	1.76
	SiO ₂	1.544, 1.553
	MgO	1.74
	NaCl	1.55
	BaTiO ₃ .	2.40
	TiO ₂	2.71
	Pyrex glass	1.47
$v_{\rm vac}$ $\lambda_{\rm vac}$ sin i	Soda-lime-silicate glass	1.51
$n = \frac{v_{\text{vac}}}{v_{\text{mat}}} = \frac{\lambda_{\text{vac}}}{\lambda_{\text{mat}}} = \frac{\sin i}{\sin r}$ $\frac{v_1}{v_2} = \frac{n_2}{n_1} = \frac{\sin i}{\sin r}$	Lead-silicate glass	2.50
	Calcite	1.658, 1.486
	Semiconductors	
	Ge	4.00
	Si	3.49
	GaAs	3.63
	Polymers	
	Ероху	1.58
	Nylon 6,6	1.53
	Polycarbonate	1.60
	Polystyrene	1.59
	High-density polyethylene	1.54
	Polypropylene	1.49
	Polytetrafluoroethylene	1.30-1.40
	Polyvinylchloride	1.54
	Poly(ethylene terephthalate)	1.57

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)


Spring 2005

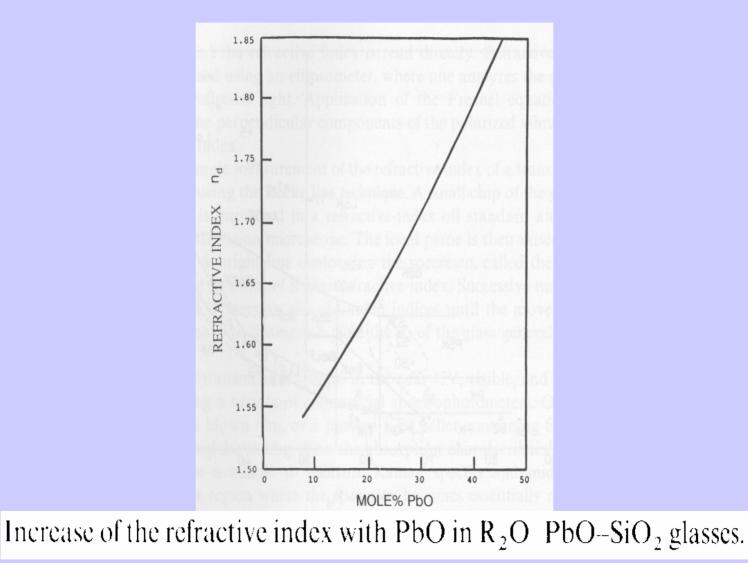
Refractive indices of some glasses


Glass composition:	n _D
From orthoclase (KAlSi ₃ O ₈)	1.51
From albite (NaAlSi ₃ O ₈)	1.49
From nepheline syenite	1.50
Silica glass, SiO ₂	1.458
Vycor glass (96% SiO ₂)	1.458
Soda-lime-silica glass	1.51-1.52
Borosilicate (Pyrex) glass	1.47
Dense flint optical glasses	1.6-1.7
Arsenic trisulfide glass, As ₂ S ₃ Tellurite glasses (TeO ₂ -based)	2.66 1.8 - 2.3

(Adapted from: Introduction to Ceramics, W.D. Kingery et al., John Wiley, 1976)

Dispersion is the change in refractive index with the wavelength of light. In the absence of absorption, the (*normal*) dispersion generally corresponds to a decrease of the refractive index with increasing light wavelength, as shown below.

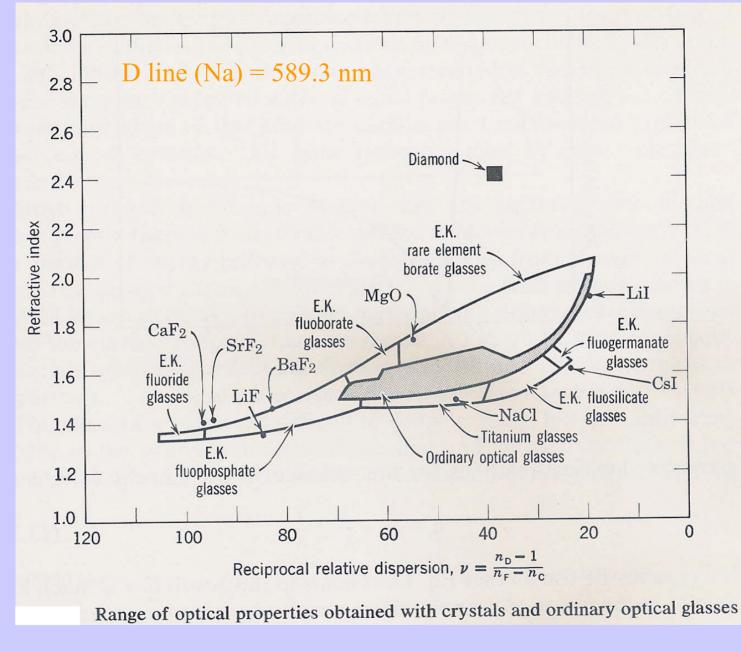
(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)


(a) Change in refractive index with wavelength for typical glasses in the visible

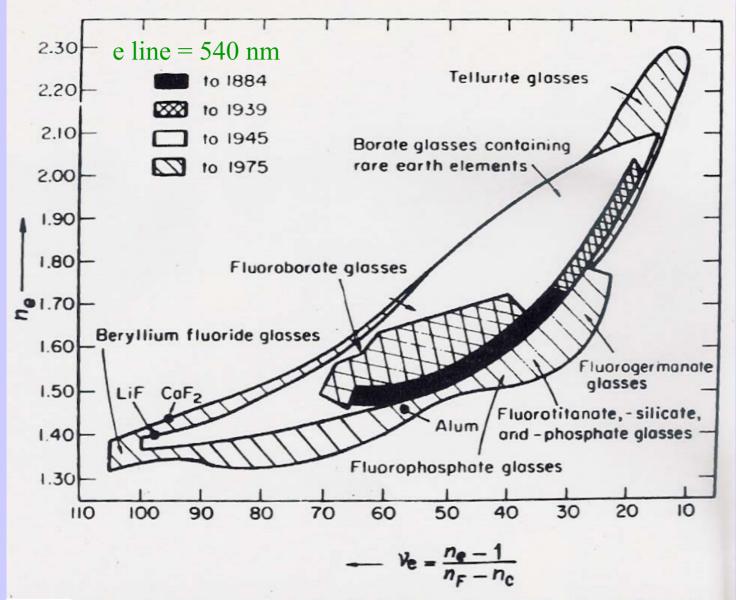
(Adapted from: Introduction to Ceramics, W.D. Kingery et al., John Wiley, 1976)

Spring 2005

Lecture 13


The well known brilliance of "crystal glass" is not only a result of its high refractive index, but especially of its high dispersion.

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)


Spring 2005

Lecture 13

(Adapted from: Introduction to Ceramics, W.D. Kingery et al., John Wiley, 1976)

Lecture 13

Status of the development of optical glasses characterized by their location in the Ernst Abbe $n_e - \nu_e$ diagram.