Dynamic heterogeneity of glassy ionics: Results from nuclear magnetic resonance and low-frequency spectral hole burning

Roland Böhmer

Video Module 1: Introduction

- **1. Introduction**
- 2. Ion dynamics studied by NMR
- **3. Nonresonant spectral hole burning in CKN**

4. Conclusions

Glass Lecture Series: prepared for and produced by the International Material Institute for New Functionality in Glass An NSF sponsored program – material herein not for sale Available at www.lehigh.edu/imi Delivered at Lehigh University Dec. 7, 2006

Univ. Dortmund

Ag K. R. Jeffrey Guelph / Canada

CKN R. Richert Arizona State Univ.

S. BerndtR. KüchlerF. QiC. Rier

Transport in solid electrolytes

Li ion battery

"fuel" cell

Membranes with high <u>ionic</u> conductivities required

electrical conducitivty of solid electrolytes

anhydrous fuel cell

Insight into transport mechanisms?

applications sensors, fuel cells, rechargeable batteries, ...

requirements stable, light, solid, inexpensive, high ionic & low electronic conductivity, suitable operating temperature, ...

goal of group at Dortmund U new experimental methods for better understanding of transport mechanisms in solid ion conductors

spatial coordinate

Principle of magnetic resonance

element specific quantitative locally selective non-destructive experimentally versatile

Principle of magnetic resonance

facilitates re-equilibration \rightarrow spin-lattice relaxation time T₁

frequency perturbation $\Delta \omega$ encoded by

spatial coordinate electronic environment distances and angles orientation imaging chemical analysis structural elucidation fiber texture testing element specific quantitative locally selective non-destructive experimentally versatile

Motional processes

detection of NMR frequencies and their time evolution

NMR frequency encoded by

spatial coordinate chemical environment orientation diffusion, flow exchange, **translation** reorientational motion

Echo height measures the fraction of ions which did NOT hop during t_m

Direct determination of correlation time on which an ion hops

Scattering "vector" q, i.e. spatial sensitivity is determined by the inverse mean jump length

This lecture continues on a 2nd module -

Video Module 2 : Ion Dynamics by NMR (Part 2)

Dynamic heterogeneity of glassy ionics: Results from nuclear magnetic resonance and low-frequency spectral hole burning

Roland Böhmer

Video Module 2: Ion Dynamics by NMR

Glass Lecture Series: prepared for and produced by the International Material Institute for New Functionality in Glass An NSF sponsored program – material herein not for sale Available at www.lehigh.edu/imi Delivered at Lehigh University Dec. 7, 2006 1. Introduction

Ion conductors Nuclear magnetic resonance

2. Ion dynamics studied by NMR Li hopping in alumino silicates Heterogeneity in silver borate glasses

3. Nonresonant spectral hole burning Material and method Experiments on Ca-K-NO₃ glass

4. Conclusions

Lithium aluminosilicates

Lithium aluminosilicates

Mesocrystalline texture (Schott, Mainz)

Zerodur®	x = 0.52	70%	62 nm
Zerodur M [®]	x = 0.44	50%	45 nm

precision optics, ceramic cooking ware

crystalline model systemsβ-spodumeneLiAlSi2O6β-eucryptiteLiAlSiO4

x = [AI]/[Si]0.5 1

⁷Li ion conductor β-spodumene

Spin-lattice relaxation indirect information on fast motion

T-dependent time scale and non-exponentiality of ion hopping

Qi, Rier, Böhmer, Franke, Heitjans, Phys. Rev. B 72, 104301 (2005)

1. Introduction

Ion conductors Nuclear magnetic resonance

2. Ion dynamics studied by NMR Li hopping in alumino silicates Heterogeneity in silver borate glasses

3. Nonresonant spectral hole burning Material and method Experiments on Ca-K-NO₃ glass

4. Conclusions

Conductivity of glassy ionics

Ag: 1.0 I: 1.8 B: 0.5 O: 0.9 Å

Howells et al., JP-CM 11, 9275 (1999)

large decoupling <u>and</u> $T \sim T_g$ are prerequisites for battery application

Line shape of $({}^{109}AgI)_x - (Ag_2O - B_2O_3)_{1-x}$

Berndt, Jeffrey, Küchler, Böhmer, Solid State Nucl. Magn. Reson. 27, 122 (2005)

Heterogeneity of ion conductors

$(AgI)_{0.6} - (Ag_2O - B_2O_3)_{0.4}$

spatial heterogeneity !

Ag: 1.0 I: 1.8 B: 0.5 O: 0.9 Å

Howells et al., JP-CM 11, 9275 (1999)

Nature of the non-exponential relaxation ?

homogeneous

heterogeneous

dynamic heterogeneity ?

amplitude modification line shape modification

Nature of the non-exponential relaxation

homogeneous

heterogeneous

experimentally distinguishable via sub-ensemble selection

multi-dimensional NMR single-molecule detection **nonresonant hole burning** optical probe spectroscopy computer simulation

amplitude modification line shape modification

resonance frequencies:

¹H: 43 MHz/Tesla

¹⁰⁹Ag: 2 MHz/Tesla !!

Interdisziplinäres Zentrum für magnetische Resonanz (IZMR) Universität Dortmund

problem:

Ag: very low sensitivity

solution:

availability of very high magnetic fields

four-time NMR

extensively used for polymers and supercooled <u>organic</u> liquids: Schmidt-Rohr, Spiess, Phys. Rev. Lett. 66, 3020 (1991) Böhmer, Diezemann, Hinze, Rössler, Prog. NMR Spectrosc. 39, 191 (2001)

Ag-phosphates: Vogel, Brinkmann, Eckert, Heuer, PRB 69, 094302 (2004)

 $(AgI)_{0.5} - (Ag_2O - B_2O_3)_{0.5}$

This lecture continues on a 3rd module -

Video Module 3 : Nonresonant spectral hole burning

Dynamic heterogeneity of glassy ionics: Results from nuclear magnetic resonance and low-frequency spectral hole burning

Roland Böhmer

Video Module 3 : Nonresonant spectral hole burning

Glass Lecture Series: prepared for and produced by the International Material Institute for New Functionality in Glass An NSF sponsored program – material herein not for sale Available at www.lehigh.edu/imi Delivered at Lehigh University Dec. 7, 2006 1. Introduction

Ion conductors Nuclear magnetic resonance

2. Ion dynamics studied by NMR Li hopping in alumino silicates Heterogeneity in silver borate glasses

3. Nonresonant spectral hole burning Material and method Experiments on Ca-K-NO₃ glass

4. Conclusions

Non-exponential conductivity and structural relaxation

Böhmer, Ngai, Angell, Plazek, JCP 99, 4201 (1993)

Structural and decoupled relaxations

Böhmer, Ngai, Angell, Plazek, JCP 99, 4201 (1993)

Origin of non-exponentiality

Nanoscopic heterogeneity in ionic conductors ?

heterogeneous cluster model:

glass ceramics, nanocrystals, ion conductors in general ??

or correlation effects ?

homogeneous jump-relaxation-model: Coulomb interactions

effectively time dependent rates W(t)

 \downarrow

time evolution exp[-t W(t)] $\propto exp[-(t/\tau)^{\beta}]$

Funke, SSI **40**, 200 (1990)

mark a subensemble

Selection experiments

1. spectral or spatial selection or <u>excitation</u> of sub-ensemble 2. detection of sub-ensemble

Nonresonant hole burning

supercooled liquids : Schiener, Loidl, Böhmer, Chamberlin, Science 274, 752 (1996)

Nonresonant hole burning

supercooled liquids α: β: wing:	Schiener, Loidl, Böhmer, Chamberlin, Science 274, 752 (1996) Richert, EPL 54, 767 (2001) Jeffrey, Richert, Duvvuri, JCP 119, 6150 (2003)	
relaxor ferroelectrics	Kircher, Schiener, Böhmer, PRL 81, 4520 (1998)	
plastic crystal	Wirsch, Kircher, Böhmer (1998, unpublished,*)	
magnetic (spin glasses)	Chamberlin, PRL 83, 5134 (1999) Solid	
ion conductor CKN	Richert, Böhmer, PRL 83, 4337 (1999)	
quantum paraelectrics	Kleemann et al., Ferroelectrics 261, 43 (2001)	
stochastic models	Diezemann, EPL 53, 604 (2001)	
electrical circuit analog	Richert, Physica A 322, 143 (2003)	
binary glass-formers	Blochowicz, Rössler, JCP 122, 224511 (2005)	
mechanical (polymers)	Shi, McKenna, PRL 94, 157801 (2005)	
*review	Böhmer, Diezemann, in: Broadband Dielectric Spectroscopy edited by Kremer, Schönhals (Springer, 2002), p. 523-569	

Nonresonant hole burning

nonresonant (NHB)

phase cycle: $\Delta \Phi(t) = \Phi^*(t) - \Phi(t)$

10 years ago: First results on a viscous liquid

high-frequency pump: short-time modifications

low-frequency pump: long-time modifications

 \downarrow

selection of different sub-ensembles possible: **dynamic heterogeneity**

Schiener, Loidl, Böhmer, Chamberlin, Science 274, 752 (1996) 1. Introduction

Ion conductors Nuclear magnetic resonance

2. Ion dynamics studied by NMR Li hopping in alumino silicates Heterogeneity in silver borate glasses

3. Nonresonant spectral hole burning Material and method Experiments on Ca-K-NO₃ glass

4. Conclusions

CKN – pump frequency dependence

heterogeneous regime: hole depths \propto dielectric loss frequency selective energy absorption

OBSERVATION: t_c corresponds to transition from dc to ac resistivity ρ (or σ)

ion needs $t_c \sim 1/\Omega_c$ to average over heterogeneity

Conclusions

Structure dynamic relationship in crystalline and glassy lithium aluminosilicates

High magnetic fields facilitate investigations of dynamic heterogenities in ion conductors also with less favorable nuclear probes (Ag)

Nonresonant spectral hole burning is a useful tool for different classes of materials. Direct observation of transition from heterogeneous to homogeneous behavior in CKN

log (frequency)