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Narayanaswamy’s model of structural relaxation has been 
shown to provide an excellent description of the behavior of a 
variety of glasses. In the standard formulation, the relaxation 
time, T, is represented by the Arrhenius equation, with the 
activation energy partitioned between the temperature and 
fictive temperature. That form for T is successful, but lacks 
theoretical justification. In this paper, the Adam-Gibbs equa- 
tion is shown to describe accurately both 7 and the viscosity of 
NBS 710 (alkali lime silicate) glass. This equation is expected to 
be accurate over a wider range of temperature and fictive 
temperature than the Arrhenius equation. 

I. Introduction 

HEN a liquid is cooled into the glass-transition region, its W properties become time-dependent because the time re- 
quired for rearrangement of the molecular structure is similar to the 
duration of a typical experiment. The gradual approach of 
the properties to their equilibrium values is known as structural 
relaxation. * This subject has received considerable theoretical 
and experimental attention in recent years. In a classic paper, 
Narayanaswamy ’ presented a phenomenological theory that has 
been notably successful in describing the structural relaxation 
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behavior of a variety of  material^.'.^ The present paper concerns 
the mathematical form for the relaxation time to be used in 
Narayanaswamy’s model. To date, most authors have used the 
Arrhenius equation, but the way in which it has been used lacks 
theoretical justification. We will show that, on theoretical and 
practical grounds, the Adam-Gibbs4 equation is the most satis- 
factory expression available. 

In the next section, the Narayanaswamy model is presented, 
along with the expressions for the relaxation time that have been 
considered previously. The Adam-Gibbs (AG) expression is com- 
pared with the others and, in Section 111, it is applied to data for 
NBS 710 glass. Section IV provides a discussion of structural 
relaxation at large departures from equilibrium. 

11. Form of T(T,  TI) 

Figure 1 shows the evolution of some property, p ,  of a liquid as 
it is cooled through the glass transition. At low temperatures, the 
temperature dependence is governed by the vibrations of the atoms 
which are frozen into a fixed arrangement; the slope of the curve 
in that glassy region is dpldT = ap8. Above the transition region, 
there is an additional contribution to p(T)  as the mobility of the 
atoms permits rearrangements of the structure; in the liquid, 
dp/dT = apt and the difference, aps = apl - ap8, is the structural 
contribution to the temperature dependence of the property. The 
fictive temperature, Tfp, is defined as the intersection of the ex- 
trapolations of the liquid and glass curves, as shown in Fig. l(A). 
We can write the property of a glass in terms of its fictive 
temperature as follows: 

p(T1) = Po + ffpyP((Tfp - To) + cuP,(TI - Tf,) (1) 
This means that the value of p is the same as that for a liquid 
equilibrated at T = Th, then quenched instantly to T = TI. It 
should not be interpreted to mean that the structure of the glass is 
the same as that of a liquid in equilibrium at T = Tfp. Since the 
latter condition is not met, the fictive temperatures for different 
properties (e.g., enthalpy and refractive index) may be different’; 
that is why the subscript p is appended to the fictive temperature. 

Figure 1(B) illustrates the variation in p ( T ,  t)  during a sudden 
change from temperature TI  to T z ,  after equilibration at T I .  Imme- 
diately after the temperature change, Tfp = TI and 

and after relaxation is complete, Tfp = Tz  and 

Fig. 1. (A )  Temperature dependence of prop- 
erty p of glass-forming liquid; aP, = dp/dT 
for equilibrium liquid; a,, = dp /dT  for glass; 
Tf i  is fictive temperature for propertyp. ( B )  Vari- 
ation of property p following equilibration 
at temperature T ,  and sudden change to TL:  
p(T,, 0) - p(T1,m) = instantaneous response; 
p ( T 2 , m )  - p ( T , ,  0) = delayed,  structure- 
dependent response. 

where M, is the relaxation function for property p .  M,, which 
varies from 1 to 0 as relaxation proceeds, can be measured in 
temperature jump experiments of the type just described (e.g., 
Ref. 6) or by fitting data obtained during continuous cooling and 
reheating.’ Narayanaswamy’ showed that the evolution of a prop- 
erty during an arbitrary thermal history, T(t), can be described by 

dT 
p ( T ,  t )  = p(To, a) + apr(T - To) - cups M p ( S  - 5 ’ ) Y d t ’  

d5 

504 
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where 5 is the reduced time defined by 

and T, is the relaxation time for property p .  Narayanaswamy pro- 
posed the expression 

(7) 

where AH is the activation energy, R is the gas constant, and T,, and 
x are constants, where 0 < x < 1. It is generally found that AH for 
T, is identical to the activation energy of the viscosity, 7. In effect, 
x partitions the activation energy between a purely temperature- 
dependent term and a purely structure-dependent term. At equi- 
librium, Tf, = T ,  and Eq. (7) reduces to the Arrhenius equation, 

T, = T~ exp(AH/RT) (8) 

In Eq. (6), T , ~  = i-,(Tr, T,) where T, is an arbitrary reference tem- 
perature; 7,. is included to give 5, the units of time. At equilibrium, 
when T = T,, then 5 = t .  

Although this model has been very successful in describing 
relaxation data, the form of Eq. (7) is unsatisfying, because the 
partition of the activation energy lacks a theoretical foundation. 
There are other expressions which seem more a p p r ~ p r i a t e . ~ . ~  

Macedo and Litovitz (ML)9 suggested an equation having the 
form 

where T~ and y are constants (% < y < l ) ,  V, is the core or 
occupied volume of the atoms, V, is the free volume, V, = V - V,, 
V is the total volume, and Q is an activation energy. The rationale 
for Eq. (9) is that exp(Q/RT) is proportional to the probability of 
an atom attempting a jump, and exp(-yV</V,) is proportional to the 
probability of there being a hole into which the atom may move. 
An equivalent expression was used by Spaepen and coworkersIo3'I 
in studies of structural relaxation in metallic glasses. As shown in 
the appendix, Eq. (9) may be written in terms of the volume fictive 
temperature, T,: 

where TI is the temperature at which Vf = 0, a, = a, - ag, and 
a, and a, are the volume thermal expansion coefficients of the 
liquid and glass, respectively. (In terms of the previous notation, 
aI = avI/V, a, = a,/V, and a, = (avl - av,)/V.) It has been 
shown7 that the use of Eq .  (10) in place of E q .  (7)  in 
Narayanaswamy's model leads to significantly different predic- 
tions for the change in properties at high cooling rates. Unfortu- 
nately, there are some inherent difficulties with Eq. (10). The 
relaxation time should be 

TP = 7/KP (11) 

where K p  is the relaxation modulus for property p ;  that is, T and 11 
have the same temperature dependence. When Tf, is constant, the 
apparent activation energy for T, or 7 is, according to Eq. (lo), 

which is to be compared with the quantity xAH in Eq. (7). Numer- 
ous studies of structural rela~ationl-~ and of isostructural viscous 

in oxide glasses have shown that x - %, so Q = 250 to 
330 kJ/mol. However, at high temperatures the total activation 
energy for viscous flow for the same glasses is less than 
250 kJ/mol. Therefore, the ML equation cannot represent the tem- 
perature dependence of 7 over a broad range of temperature. Of 
course, it fits better than the Arrhenius equation, but its failure to 
describe the whole viscosity curve raises doubts about its validity. 
In addition to this basic problem, there is a practical problem with 
the use of the ML equation. It is generally observed14 that a, 

f loWlZ.13  ' 

decreases linearly with temperature near T8, where both a1 and as 
can be measured: 

(13) 

where a I / a O  approximates - 10-4/0C. However, leaving a,, 
and a1 as free parameters and fitting the ML equation to the 
viscosity of NBS 710 glass, one obtains' al/a,, of approximately 
-lO-'/OC. Not only is this value unexpectedly large, but it also 
leads to nonphysical negative values of a, at T > lo00 K. This 
limits the utility of the ML equation to the same narrow tem- 
perature range that the Arrhenius equation describes. The source of 
the problem is not simply the failure of the linear approximation in 
Eq. (13); the strong temperature dependence of a, is demanded 
because of the large value of Q that is needed to describe iso- 
structural flow at low temperatures. 

a, = a0 + alT 

Another form for T was suggested by Mazurin et aZ.": 

where T ~ ,  A, To, and Q are constants. At equilibrium, when 
T' = T, Eq. (14) reduces to the Vogel-Fulcher equation, 

(15) 

and when T, is constant, it has the form of the Arrhenius equation 
with an activation energy of Q. Equation (14) is strictly empirical, 
but is able to describe the equilibrium curve over a large tem- 
perature range, as well as providing for the observed Arrhenian 
behavior under isostructural conditions. It seems unlikely that Q 
could be independent of T,, because it would exceed the total 
activation energy for flow at high temperatures. Unfortunately, 
there are as yet no experimental data (on isostructural flow at high 
fictive temperatures) to resolve this question. 

Another model for the structural relaxation time is based on 
the suggestion of Gibbs and DiMarzioI6 that flow involves the 
cooperative rearrangement of increasingly large numbers of mole- 
cules as temperature decreases. According to this view, the experi- 
mentally observed glass transition is the kinetic manifestation of a 
second-order thermodynamic transition that would occur at a 
slightly lower temperature. Using assumptions that apply specifi- 
cally to polymeric liquids, Adam and Gibbs (AG)4 obtained an 
expression for T involving the configurational entropy, S,: 

T = T~ exp[A/TS,] (16) 

A = ApSuS,*/k (17) 

T = r0 exp[A/(T - TO)] 

where A is a constant given by 

where A p  is the potential barrier hindering rearrangement, k is 
Boltzmann's constant, and SP is the configurational entropy of the 
smallest group of molecules that can undergo a rearrangement. If 
we write 

S,*/k = In W* (18) 

then W *  is the number of configurations available to that group of 
molecules; W* is expected to be -2. The configurational entropy 
is given by 

S,(T) = (AC,/T)dT (19) I: 
where AC, = C,,, - C,,, and C,,, and C,,, are the isobaric heat 
capacities of liquid and glass, respectively. Tz is the temperature at 
which S, = 0, i.e., the temperature of the second-order transition. 
Equation (19) is based on the idea that C,, is a measure of the 
vibrational contribution to specific heat, and that the difference 
between C,, and C,,, results from molecular rearrangements in the 
liquid. Goldstein" raised the possibility that a significant fraction 
of AC,, actually arises from anharmonic vibrations and secondary 
relaxations. Those processes are not relevant to the cooperative 
rearrangement involved in flow, so their contribution to AC,, 
should be subtracted before calculating S, from Eq. (19). The 
shape of the curve generated from Eq. (16) is quite similar to that 
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Table I. Composition of NBS 710 Glass 
Oxide Amount (wt%) 

SiO, 70.5 

- 

IO- 

9- 

8- 

8.7 
7.7 

11.6 
1 . 1  
0.2 
0.2 

Table 11. Best-Fit Parameters for Adam-Gibbs Eauation 
Parameter Value 

Th, 2.93 x 1 0 - 1 ~  
TOH 5.50 X l O - ” s  

8 R  8052 K 
1.13 X IO-’Pa*s 

72 
C 
K ,  
KH 

493.5 K 
-8.0 x K - I  

3.86 X lo9 Pa 
2.05 X 1O’Pa 

obtained from Eq. ( 1 9 ,  which has been found to represent the 
viscosity of oxide glasses over a wide temperature interval. The 
AG equation represents the viscosity well for some organic 
liquids,” but fails for others. IY Those problems, particularly the 
appearance of improbably large A p  values, may result from the 
inappropriate use of the total AC,, without correction for an- 
harmonic contributions. The entropy model of Gibbs and DiMarzio 
has been much more successful than the free volume theory in 
accounting for the pressure dependence of the glass-transition 
temperature.” 

The configurational entropy is a function of the fictive tem- 
perature of the enthalpy as it depends on the existing structure 
rather than the equilibrium one. Therefore, 

S, = /’ fw(AC,/T)dT T> (20) 

Experimentally one finds that, near the transition range, 

AC, = Co + C i T  (21) 

Substituting Eqs. (20) and (21) into Eq. (16) we find 

where Q = AR/Co and C = C,/Co. Note that Eq. (22) indi- 
cates that the relaxation time for any property depends on the 
fictive temperature of the enthalpy. This contradicts the sug- 
gestion of Narayanaswamy’ that T~ = T,(T, Tf,). Gonchukova’l 
showed that enthalpy relaxation data are better represented using 
T,, = TH(T, T f H )  than using TH = 7H(T, T&). Since H and v exhibit 
different relaxation kinetics, it must also be true that T,#(T,T,). 
It seems likely that the relaxation time should be 

for the following reason. Saying that different properties have 
different fictive temperatures is simply an abstract way of acknowl- 
edging that structural changes affect different properties to differ- 
ent extents. For example, the viscosity of an oxide glass may 
be more sensitive to the arrangement of bridging oxygens, while 
the heat capacity might depend more on the arrangement of 
nonbridging oxygens. Those structural units, having different 
mobilities, could equilibrate at different rates, causing different 
relaxation kinetics for 1) and H .  Equation (23) could be interpreted 
to mean that the relaxation of a property is controlled by those 
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Fig. 2. Viscosity of NBS 710 glass; experimental points from 
Ref. 22, curve calculated from Adam-Gibbs equation using pa- 
rameters from Table 11. 

cooperative rearrangements involving the structural units to which 
it is most sensitive. We shall adopt this view in the following. 
When the fictive temperature is constant, the activation energy is 

Thus, the AG equation predicts Arrhenian behavior for iso- 
structural flow, but indicates that the activation energy decreases as 
Tfi increases. In the next section we test the performance of the AG 
equation, using data from the literature for NBS 710 glass. 

111. Application of the AG Equation 

NBS 710 is a soda lime silicate glass provided by the U.S. 
National Bureau of Standards for use as a viscosity calibration 
standard. Consequently, very accurate data are available for the 
equilibrium viscosity of the liquid from 10 to lot4 Pa. s. In addi- 
tion, the isostructural viscosity and structural relaxation behavior 
of this glass have been studied. The nominal composition of the 
glass is given in Table I. In this section, the AG equation is shown 
to provide a good description of the flow and relaxation data. 

( I )  Viscous Flow 
The equi l ibr ium viscosity of NBS 710 in the range 

8 s  loglo v(Pa-s) G14 was reported by Napolitano et al.’’ We 
have fit those data to the AG equation in the form 

with vo, Q ,  T2, and C all treated as free parameters. Not sur- 
prisingly, it was found that several sets of values for these four 
quantities gave equally good fits. These sets were then tested 
against the relaxation data (described below) to find the values 
giving the best description of all the data. The values thus obtained 
are given in Table 11. Figure 2 shows the curve calculated 
from Eq. (25) with these parameters, together with the data of 
Napolitano et al. The fit is very good, but this is to be expected for 



July 1984 Use of the Adam-Gibbs Equation in the Analysis of Structural Relaxation 507 

I6 

15 

I4 

I3 - 
u) 

0 a 

F 
P 

- 
pr - 

I I -  

10 

a four-parameter fit. A more interesting test is provided in Fig. 3, 
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with the data of Mazurin et a1.I' They measured the rate of iso- 
structural flow with T,, fixed at 522°C. The measured isostructural 
activation energy of 297 kJ/mol compares well with the predicted 
value of 283 kJ/mol. 

It is important to test the physical significance of all of the fitting 
parameters. The preexponential factor agrees with the value 
=lo-' Pa * s obtained by extrapolation of high-temperature data 
for many The specific heat for this glass has been 
measuredz3 with the result: 

AC,(J/g.K) = 0.984 - 8.83 X T(K) (27) 

so that C = C,/Co = -(9.0 2 0.5) X 10-4/K. This error bound, 
based on the reported experimental uncertainty, may be an under- 
estimate." Nevertheless, the value is in reasonable agreement 
with the value (-8.0 X obtained from the fit. To be 
self-consistent, let us use the latter value of C and the experi- 
mental results C,, = 1.46 and C,,(750 K) = 1.13 J/g, and revise 
Eq. (26) to 

ACp(J/g*K) = 0.805 - 6.44 x T(K) (28) 

Noting that Q / R  = A/Co and using Co = 0.805 J/g.K and a for- 
mula weight of 61.9 g/mol, we find A = 400 kJ/mol. Assuming 
that A p  = 420 kJ/mol, roughly the strength of an Si-0 bond, we 
find W *  = 2.6, which is a reasonable value. The value of the 
transition temperature, T,, is difficult to assess, since no absolute 
entropy data are available. 

Equation (25) with the given parameters is in error by loglo 
71 = 0.2  when 7 = lo5 Paas,  so the linear approximation 
(Eq. (21)) to ACp is satisfactory over =9 orders of magnitude in 
7. We can extract AC, from the viscosity data by noting that the 
AG equation predicts 

To find the derivative of the viscosity data, it is best to use the 
empirical equation suggested by the NBS, which applies for 
1.0 s log,, q s 12.0: 

4236 
T("C) -266 loglo q(Pa*s) = -2.626 + (? ,020) (30) 

With this result, Eq. (29) predicts that AC, passes through zero 
near 1300"C, where loglo 77 -- 1.5. This is near the range of vis- 
cosity where Goldstein2' showed that the concept of a potential 
barrier to flow becomes meaningless. That is, the nonphysical 
negative ACp values are only required in the temperature range 
beyond the theoretical applicability of the AG equation. Note 
that we have used the total AC,. Our success implies that 
anharmonicity and secondary relaxations are not important in 
this glass. 

(2) Structural Relaration 
The structural relaxation of NBS 710 glass has been studied by 

careful measurements of the refractive index, n, following sudden 
changes in temperature.z6 In one case, in a so-called cross-over 
experiment, the glass was equilibrated at 830 K, then held at 
704 K to allow partial relaxation, then raised to 798 K .  During the 
last hold, n is observed to move away from equilibrium initially, 
then to return toward equilibrium. This behavior reveals the pres- 
ence of more than one relaxation m e c h a n i ~ m . ~ ~ ~ ~ *  Those index data 
have been compared with measurements of the relaxation of the 

'To obtain a copy of Ref. 23, order ACSD- 188 from Data Depository Service, The 
American Ceramic Society, 65 Ceramic Drive, Columbus, Ohio, 43214. 

I I I I I 
I I  12 13 14 15 

10'/T 

Fig. 3. Viscosity of NBS 710 glass; equilibrium and 
isostructural curves calculated from Adam-Gibbs equa- 
tion using parameters from Table 11, data from Ref. 12. 

Table 111. Parameters of Relaxation Function 
k w k  A, 
1 0.0850 36.6 
2 0.305 3.90 
3 0.470 0.637 
4 0.140 0.210 

enthalpy,z3 H ,  leading to the conclusion that H and n have identical 
relaxation kinetics. 

To test the utility of the AG equation, we used the more precise 
refractive index data. Values of M ,  were calculated using Eq. (4) 
and (/T", was calculated from Eq. (6) using Eq. (23). First, the set 
of parameters corresponding to (the experimentally determined 
value) C = -9 X 10-4/K was used to generate (/T,,,; then those 
values and the experimentally determined M ,  data were fit to 

where W x  and hk are constants. This function was then used to 
predict the course of relaxation during the cross-over experiment. 
After a poor fit resulted, the value of C was reduced; the best fit 
was given by C = -8.0 X 10-4/K with the other parameters in 
Table 11, and with M ,  defined by the constants given in Table 111. 
This function is almost identical to the function found by Sasabe 
et and DeBolt": 

The curve calculated from Eq. (31) is compared in Fig. 4 with one 
of the sets of DeBolt's data that fits least well. Figures 5 and 6 
show calculated curves based on the AG equation and measured 
data; the fit is very good. Note that n has been converted to Tfn 
using the experimentally determined relation" 
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calculated from Eq. (31) with parameters given in Table 111. 

Relaxation function for refractive index; data from Ref. 26. curve 

NBS 710 APPROACH C U R V t S  

8307 

10 30 100 300 loo0 3000 loo00 
( t  - 1,) (mm) 

Fig. 5. Change in  qn during hold at T , ,  following temperature step at time 
ro from equilibrium at To: curve 1, To = 832.5 K,  TI = 804.4 K; curve 2, 
K, = 813.6 K ,  TI = 785.7 K; curve 3 ,  To = 786.5 K ,  TI = 808.5 K; 
data from Ref. 26; curves calculated using Adam-Gibbs equation for 7,. 

' 'Or  

NBS 710 
CROSSOVER 

O/ 

I , I I , , . I  I , , > . . . I  I , , . . .  , I  
3 10 30 100 300 1000 

7961 

(l-t,)(rnin) 

Fig. 6. Change in Tfn for NBS 710 glass equilibrated at To = 830.3 K ,  
suddenly cooled to TI = 704.0 K at time to = 0, and then suddenly heated 
to T,  = 797.9 K at time t ,  = 2687 min; data from Ref. 26; curves calcu- 
lated using Adam-Gibbs equation for 7,. 

T,JK) = 809.1 - ( n  - 1.52075)/2.31 X lo-' (33) 

The heat-capacity data were then fit using the same relaxation 
function, i.e., M H  = M , .  It was necessary to increase the pre- 
exponential factor, T ~ ~ ,  by a factor of = 2  compared to T~ , , .  The fit 
is shown in Fig. 7 ,  and is seen to be very good. The calculated 
curves are not smooth, because of the small number of terms in 

REHEATING ZO"C/min 

COOLING RATE 

1 1 -  
I O U L  -Li id1 2-u 
730 750 770 790 810 830 850 870 890 910 930 

T ( K I  

Fig. 7. Heat capacity of NBS 710 glass during heating at 20"C/min 
following cooling at 0.31", 2.5", and 20"C/min; data from Ref. 23; curves 
calculated using Adam-Gibbs equation for T ~ .  

Eq. (31). Each exponential term has its own "glass transition," 
which appears as a bump. If Eq. (32) were used for these calcu- 
lations, those bumps would not be observed. The difference in T ~ , ,  

and T~~ (Table 11) indicates that the relaxation rates for n and H are 
slightly different, in contrast to the conclusions of Sasabe et ~ 1 . ' ~  

Thus, the AG equation fits both the equilibrium and 
nonequilibrium viscosity data for  NBS 710. Used with 
Narayanaswamy's model, it accurately represents the structural 
relaxation data for refractive index and enthalpy. All of the param- 
eters, including the preexponential constants, have physically 
reasonable values. Given this success, and the plausible theoretical 
foundation of the AG equation, it appears to be the most suitable 
form for T(T, T f )  for the analysis of structural relaxation. It will be 
interesting to see whether these results are unique to NBS 710, or 
whether the AG equation applies as well to other oxide glasses. It 
will be particularly interesting to test the prediction that the activa- 
tion energy for isostructural flow decreases as Tf, increases. 

In the next section, we consider the implications of the AG 
equation for relaxation far from equilibrium. This is of interest for 
very rapidly quenched (e.g., splat-cooled or fiberized) glass and 
for glass annealed far below T,. 

IV. Relaxation Far from Equilibrium 

( I )  Effect of Cooling Rate on T,  
As a material is cooled, the fictive temperature approaches 

a lower limit, T,,  known as the glass-transition temperature, 
which is a function of the cooling rate. Using Eqs. (1) and ( 5 ) ,  
Narayanaswamy ' found 

dT 
(34) Tf, = T - Jot M,([ - ['),dt' 

d5 
This result can be used to calculate T, for various values of 
q[=(dT/dt)]; results obtained with Eq. (34) are shown in Fig. 8. 
The circles show the calculated T, for various q: The solid curve 
is a plot of the equilibrium viscosity from Eq. (25) with the pa- 
rameters in Table 11; the dashed line is the Arrhenius approxi- 
mation used by Sasabe et a1.2': 

In q(Pa.s) = -61.29 + 73658/T(K) (35) 

The curve of log( I/lql) vs 1/T, parallels the plot of log q vs 1/T, 
so we can write 

(36) log,, q(Pa-s) = 11.3 - log,,(q/ ("C/s) 
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abscissa) according to Adam-Gibbs equation (solid line) and 
Arrhenius equation (dashed line). 

or, using KH from Table 11, 

so that 

- IT=Tr  = - 1  

If T~ were given by Eq. (8), then Eq. (37) would become 

(39) 

which is the result given by Moynihan et al.'" Equation (38) gen- 
eralizes the earlier result of Ritland,30 Moynihan's modification, 
and the present numerical results. For modest cooling rates, 
- 1.5 C -loglo 141 G 2.0, Eq. (39) would be closely obeyed, but 
for more extreme rates, the predictions of the AG equation and the 
Arrhenius equation diverge. 

(2) Relaxation After Quenching 
From Fig. 8 it is evident that the differences between the predic- 

tions of the AG and Arrhenius equations become important at 
extreme cooling rates. If a sample were splat-cooled at lo6 'C/s 
and reheated, the evolution of its properties would not be correctly 
predicted using the Arrhenius equation. To test the magnitude of 
the errors in such cases, we have simulated the heat capacity during 
reheating after cooling at high rates. To avoid the "lumpiness" of 
the curves in Fig. 7, the 4-term approximation to MH is replaced 
with a fit to 

M H  = exp[-(t/TH,)0651 (40) 

using 9 exponential terms, with the constants determined by 
Moynihan et nl." Tm was calculated from Eq. (34) and the plotted 
function is given byz9 

O 2 I  

-02- 
750 800 850 

T ( K )  

-Adam-Gibbs 
--- Arrhenius 

-2 
900 950 

Fig. 9. 
T~ given b 
9< = - I T &  and heating at qH = 20"C/min. 

Heat capacity curves calculated using Eqs.(34) and (40), with 
Adam-Gibbs and Arrhenius equations, for cooling at 

Adam - G i bbs 
Arrhenius 

- 
--- 

I I I 1 

l o '  7b0 800 900 1000 1100 

T(K) 

Fig. 10. Same as Fig. 9, except q' = - 104"C/s. 

For the calculations based on the Arrhenius equation, we used 
Eq. (7) with A H  = 612 kJ/mol and x=0.44, as found by Sasabe 
et nl.23 The preexponential constant was chosen to be T~~ = 
7.5 X s to make the calculation coincide with the result 
based on the AG equation when q = - l0C/s; that value of T~~ is 
close to that (1.09 2 0.29 X s) found by Sasabe et al. For 
the AG equation, the constants were those in Table 11. Figure 9 
compares the calculated curves for cooling at l"C/s and reheating 
at 20"C/min; the predictions based on the AG and Arrhenius equa- 
tions are in good agreement. However, Figs. 10 and 11 show that 
the differences become substantial as the cooling rate is increased. 

Figure 12 shows the change in n calculated from Eqs. (33) and 
(34) for an isothermal hold at 5OO0C, following cooling at l°C/s. 
The relaxation function is again based on a 9-term fit to 

M ,  = exp[-(t/TnJO "1 (42) 

The calculation based on the AG equation used the constants in 
Table 11; for the Arrhenius equation, we used Eq. (7) with the same 
x and A H  given above and T,,,, = 4.0X s, which makes the 
calculations agree when q = - l"C/s. The results are also in good 
agreement for a hold at 450°C. following cooling at IOO"C/s. 
However, as illustrated in Fig. 13, at high quenching rates the 
Arrhenius and AG equations lead to different fictive temperatures. 
The higher T. predicted using the AG equation leads to faster 
relaxation during isothermal annealing. This prediction remains to 
be tested experimentally. 

V. Conclusions 

Narayanaswamy's' model of structural relaxation is very suc- 
cessful at describing the nonequilibrium properties of viscous liq- 
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Fig. 11. Same as Fig. 9, except 9< = -106"C/s 
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Fig. 12. Predicted refractive index during isothermal hold at 
(A) TH = 500°C and (B)  TH = 450°C following cooling at qc = -1"C/s 
and - lOO"C/s, respectively, calculated using Adam-Gibbs (solid line) and 
Arrhenius equation (dashed line) for T", 

uids. The ad hoc partitioning of the activation energy of 7(Eq. (7)) 
gives a satisfactory representation of the influence of structure on 
T over a substantial range of temperatures. The Adam-Gibbs equa- 
tion has been shown to give an equally good representation of the 
dependence of 7 on T and T,, while providing a superior theoretical 
foundation. The AG equation leads to different predictions of 
relaxation behavior following very rapid cooling, which may be 
important for such materials as glassy metals and optical fibers. 

APPENDIX 

Dependence of Free Volume on T, 

Figure A-I provides a schematic illustratjon of the temperature 
dependence of the volume, V ,  of a glass-forming liquid. V, is the 
volume of the equilibrium liquid and V, is the core volume of the 
atoms, exclusive of interatomic volume. The free volume is de- 
fined by V, = V - V,. If V ,  is extrapolated through the glass- 
transition region, V ,  = V ,  at temperature TI ,  so VAT,) = 0. The 

I I5162 Itooo 
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I5158 - 

- 1040 

- 1060 

1.5146 I I I I I I 
0 10 20 30 4 0  50 60 

t(rnin) 

Fig. 13. 
T,, = 400" and 3OO0C, respectively. 

Same as Fig. 12, except 9c = -104 and -I06"C/s and 

volume thermal expansion coefficient is defined by a = ( 1 / V )  
(dV/dT);  the corresponding values for the liquid, glass, and 
core volume are, respectively, a,(=avl/V), a,(=av8/V),  and 

The volume along the liquid curve can be found by integrating 
a<(= a,"). 

so 

V ,  = V I  exp[ a , d T ' ]  

Since the integral is small, 

Similarly, the core volume may be written 

so the free volume is 

and 

(A-2) 

('4-3) 

(A-4) 

(A-5) 

Assuming that ax = a,, 

Tr 
(A-7) 
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where a, = ar - a,. 
Equation (A-7) applies along the equilibrium liquid curve. To 

describe the free volume of the nonequilibrium liquid, we note that 
the volume, V ,  may be written (see Fig. A-1): 
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I 

(A-8) 

so 

Substituting Eq. (A-3) into Eq. (A-9). and neglecting the second- 
order term in a ,  we find 

(A-10) 

Using Eq. (A-4) and assuming a, = ag, we find from Eq. (A-10) 
that 

V’ = V - V, = VI /:asdT’ (A- 1 1) 

so 

(A-12) 
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