Advanced Vitreous State: The Physical Properties of Glass

Steve W. Martin MSE Iowa State University <u>swmartin@iastate.edu</u>

8/28/08 Lecture 1: Orientation

- Glass Class From Univ. Florida
- Gregory Grosso <u>GGrosso@Transitions.com</u>
- Matthew Strasberg <u>mstrasberg@ufl.edu</u>
- Karthik Gopalakrishnan gaka1umt@ufl.edu
- Robert Smith <u>firefan@ufl.edu</u>
- Allyson Barrett <u>abarrett@dental.ufl.edu</u>
- Prabhu Bellarmine pjbell@ufl.edu
- Matthew Cimoch <u>mcimoch@ufl.edu</u>

- The students from ISU are:
- Randilynn Christensen, <u>rbchris@iastate.edu</u>
- Christian Bischoff, <u>Christian.m.bischoff@gmail.com</u>
- Kristina Lord, krislord@iastate.edu

3

- From Alfred University
- Joshua M. Bartlett J
- Andrew B. Crawford
- Kathryn Goetschius
- Patrick K. Kreski:

- JMB9@alfred.edu
- ABC1@alfred.edu
 - KLG1@alfred.edu
- PKK1@alfred.edu

- From Clemson University
- YANG JING JINGY@clemson.edu
- CARLIE NATHAN A NCARLIE@clemson.edu
- CHEN PENGYU PENGYUC@clemson.edu
- MASSERA JONATHAN MASSERA@clemson.edu

5

- From Lehigh University
- Belwalkar, Amit A. aab306@lehigh.edu
- Saiyasombat, Chatree chs308@lehigh.edu
- Stockdale, Andrew W. aws3@lehigh.edu
- Stone, Adam R. ars208@lehigh.edu
- Wang, Shaojie shw206@lehigh.edu
 - Zhao, Donghui

- i doz206@lehigh.edu
- Jain, R <u>c100@lehigh.edu</u>

From Penn State...

From Missouri S &T....

From Coe College...

9

From the University of Michigan...

From UC Davis....

From University of Arizona...

From....

Advanced Vitreous State – Introduction

The Details

- Meeting Times 1:00 2:15 EST
- Delivery Web Site...
 <u>http://breeze.clemson.edu/vgc</u>
- Course Blackboard (with content) web site
- https://bb.clemson.edu/webapps/portal/frameset.jsp
- Additional course info and alternative access to important content through IMI site at... <u>http://www.lehigh.edu/imi/PropertiesCourse.htm</u>

14

Advanced Vitreous State

- The syllabus:
- Syllabus
- Tuesday and Thursday
 1:00 2:15 PM EST
- Beginning Aug. 28, 2008; Last Class: Dec. 9
- Final exam: Dec. 11 Grades due: Dec. 15
- Textbook: Varshneya, 2nd edition order directly from Professor Arun Varshneya

Advanced Vitreous State

Syllabus:

	Course Connection Practice Session	Aug. 26
•	1st Class- Admin and Introduction to Content	Aug. 28
•	Volume Properties of glass: Steve Feller, Coe College	Sept. 2, 4, 9
•	Viscosity and Tg of Glass Dick Brow, University of Missouri S & T	Sept. 11,16, 18
•	Thermal Properties of Glass John Kieffer, University of Michigan	Sept. 23, 25, 30
•	Mechanical Properties of Glass Jack Mecholsky, University of Florida	Oct. 2, 9, 14
•	MS&T No Class	Oct. 6, 7, 8

16

Advanced Vitreous State

•	Strengthening of Glass Arun Varshneya, Alfred University	Oct. 16, 21
•	Passive Optical Properties of Glass Pierre Lucas, University of Arizona	Oct. 23, 28, 30
•	Active Optical Properties of Glass Denise Krol, University of CA at Davis	Nov. 4, 6, 11
•	Charge Polarization properties of Glass Himanshu Jain, Lehigh University	Nov. 13, 18, 20
•	Thanksgiving week no classes	Nov. 24-28
•	Charge Conduction Properties of Glass: Steve Martin, Iowa State Properties	Dec. 2, 4, 9
:	Course Summary and Wrap-up Grades in - last day	Dec. 11 Dec. 15

Adavnced Vitreous State

Questions...?

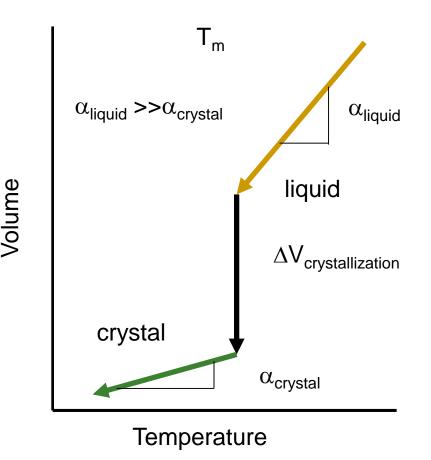
Advance Vitreous State

HW

- Each section
- By the instructor
- Graded by the instructor
- Final grades assigned by "local" instructor

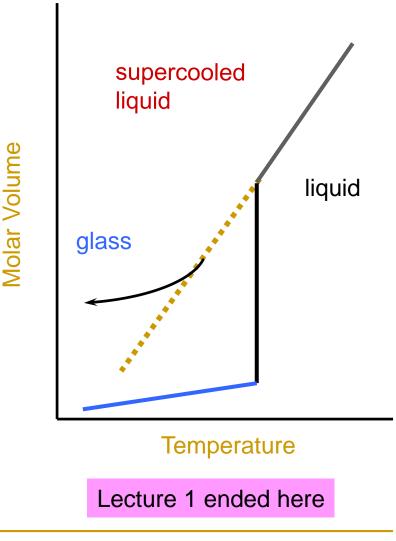
Fundamentals of the Glass Transition

- The Glass Transition is a Kinetic Transition
 - Continuous changes in structure and properties
 - Structure and properties are continuous with temperature
 - Structures and properties can be changed continuously by changing the kinetics of the cooled or reheated liquid
- Melting and Crystallization are Thermodynamic Transitions
 - Discontinuous changes in structure and properties and T_m
 - Structures are thermodynamically controlled and described by the Phase Diagram
 - T_{melting} and T_{liquidus} have fixed and specific values, 1710 °C for SiO₂, for example

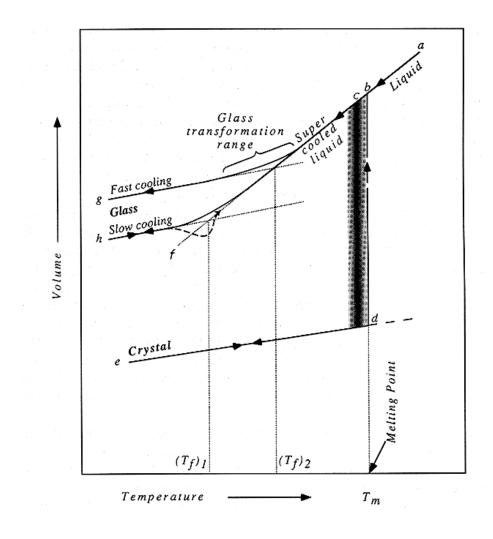

Glass Transition as a Kinetic Transition

- Let's construct a cooling curve for a liquid that will ultimately form a crystal
- Consider SiO₂, T_m = 1,710 °C
- Suppose we measure the volume of the liquid as it cools
- Sketch the temperature dependence of the volume from 2,000°C to 25 °C if one mole of SiO₂ (60 grams) is cooled at 10 °C/min.
 - 1st assume that thermodynamics controls the system, the liquid crystallizes where it should
 - 2nd assume kinetics controls the system, the liquid changes properties and structures only if it is given 'sufficient" time to change

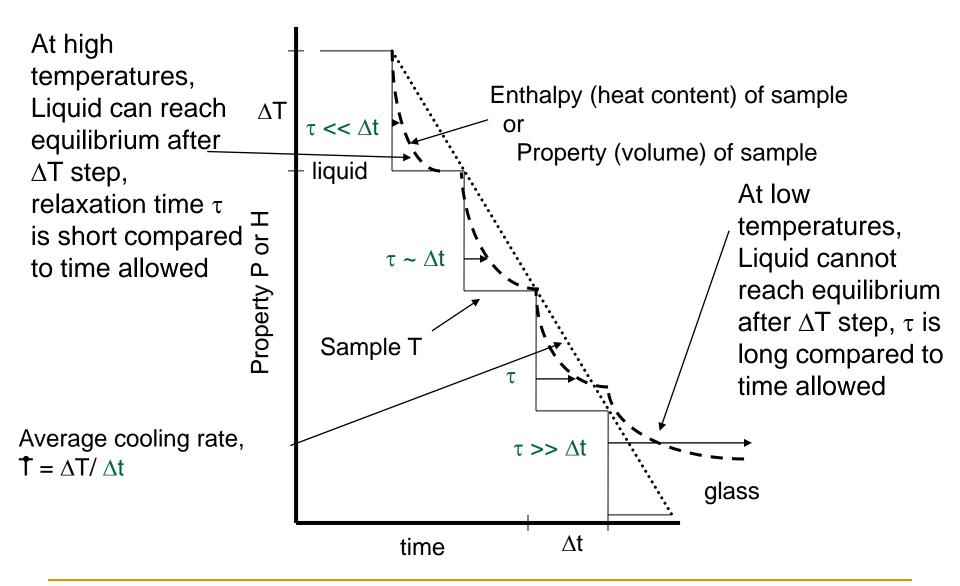
MSE 423


Crystallization is Controlled by Thermodynamics

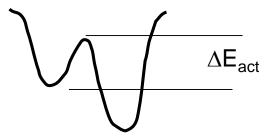
- Volume is high as a hot liquid
- Volume shrinks as liquid is cooled
- At the melting point, T_m, the liquid crystallizes to the thermodynamically stable crystalline phase
- More compact (generally) crystalline phase has a smaller volume
- The Crystal then shrinks as it is further cooled to room temperature
- Slope of the cooling curve for liquid and solid is the thermal expansion coefficient, α



Glass Formation is Controlled by Kinetics


- Glass forming liquids are those that are able to "by-pass" the melting point, T_m
- Liquid may have a high viscosity that makes it difficult for atoms of the liquid to diffuse (rearrange) into the crystalline structure
- Liquid maybe cooled so fast that it does not have enough time to crystallize
- Two time scales are present
 - "Internal" time scale controlled by the viscosity (bonding) of the liquid
 - "External" timescale controlled by the cooling rate of the liquid

The Glass Transition is a Kinetic Transition



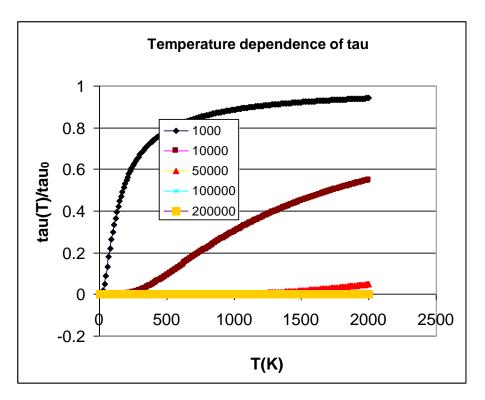
Time and Temperature Dependence of Properties

Temperature dependence of the internal time scale

- While the external time scale, ∆t most often does not change,
- The Aidter Mal timescale can be strongly temperature dependent,

- Rearrangement of the liquid requires breaking of bonds between atoms (ions)
- This requires thermal energy
- The relative magnitude of the energy barrier to motion, ∆E_{act} and the available thermal energy, kT determines the probability of "getting over" the energy barrier

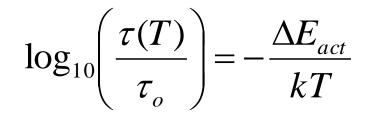
$$\tau(T) = \tau_o \exp\left[-\frac{\Delta E_{act}}{kT}\right]$$


 Arrhenius temperature dependence of the "relaxation time" Temperature dependence of the internal relaxation time

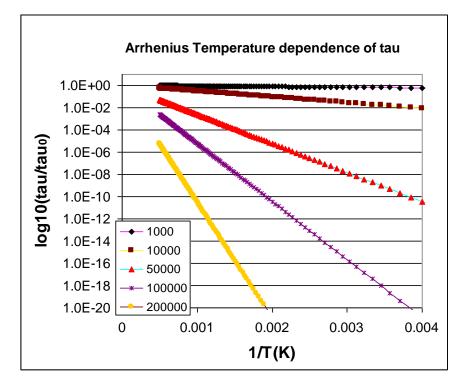
• For $\Delta E_{act} > 0$

$$\tau(T) / \tau_0 = \exp\left[\frac{\Delta E_{act}}{kT}\right]$$

0 ≤ 1

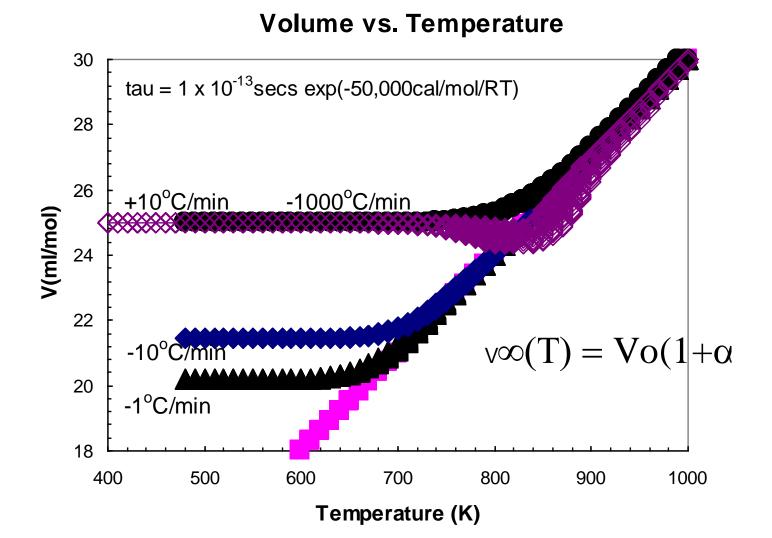

- It is a thermal "probability" of motion
- High T, kT ~ ∆E_{act}, high probability of motion
- Low T, kT << ∆E_{act} low probability of motion

$$\frac{\tau(T)}{\tau_o} = \exp\left[\frac{\Delta E_{act}}{kT}\right]$$


Temperature dependence of the internal relaxation time

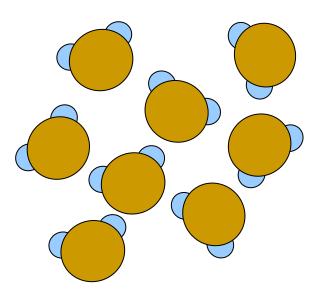
• For \triangle Eact > 0

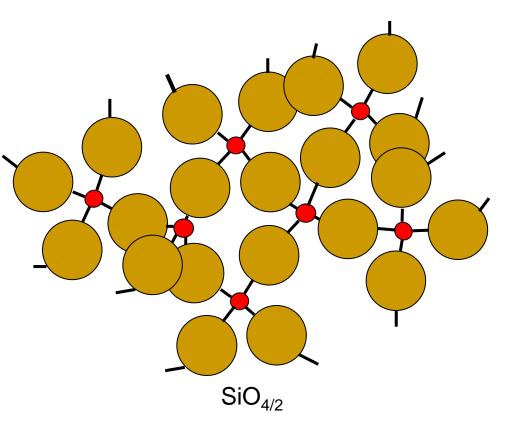
■ 0 ≤ 1


- It is a thermal "probability" of motion
- High T, kT ~ ∆Eact, high probability of motion
- Low T, kT << ∆Eact low probability of motion</p>

Glass Transition is a Kinetic Transition

- Glass formation is a kinetic transition, therefore, it depends upon the kinetics of the process
 - The internal timescale, τ, for the process is controlled by the atomic or ionic bonding between atoms or ions
 - Strong and numerous bonding increases the viscosity
 - Weak and limited bonding decreases the viscosity
 - Viscosity ∞ relaxation time, $\eta = G\tau$
 - □ The external timescale, Δt , is controlled by the experiment or process, i.e., how fast is the liquid cooled
 - Is it purposefully quenched very fast? Δt is short
 - Is it just allowed to cool naturally under prevailing conditions?
 - Or is it "insulated" and allowed to cool very slowly, Δt is long


The Glass transition from Arrhenius T dependence of tau



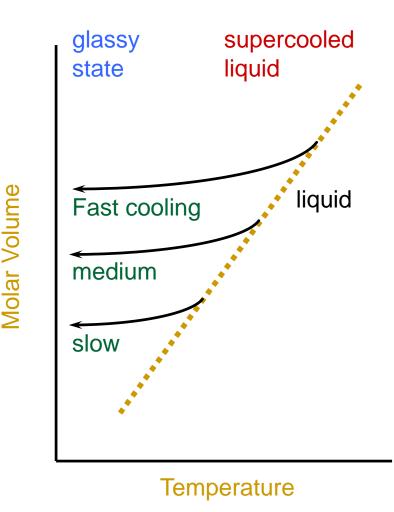
Examples of Poor and Good Glassformers

- Why is water, H₂O, found to be a very "weak" glass former
 - Requires cooling the liquid faster than 1,000,000 °C/min
 - 300 to 150K in 9 milliseconds!!
 - What is the atomic structure?
 - Talk to your neighbor and sketch the structure of 5 water molecules
- Why is silica, SiO₂, found to be a very "strong" glass former
 - Can be cooled at 10⁻¹⁰C/min and still by-pass Tm without crystallizing
 - □ 2,000 °C to 1,000 °C in 20 million years!!
 - What is its atomic structure? Talk to your neighbor and sketch the structure of 5 SiO₂ molecular units

Structure of Water compared to Silica

 H_2O

No bonding between molecules and molecules can easily flow by each other

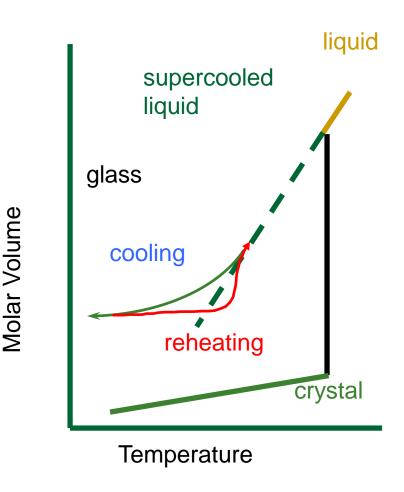

Each Si is tetrahedrally bonded to O, Si and O atoms cannot move unless other neighboring atoms also move

Cooling Rate Affects Properties of Glass

- Cooling rate, the external time scale, affects the properties of glass
 - Faster cooling rates decrease the time the liquid has to "relax", the time to readjust to the temperature change, to the properties at the new (lower) temperature
 - Slower cooling rates increase the time the liquid has to relax to the properties at the new temperature
 - Fast cooling freezes the structure of the liquid (glass) in at a higher temperature, therefore it has properties corresponding to these high temperatures
 - Slower cooling enables the structure to freeze in at a lower temperature and therefore the glass has properties corresponding to to these lower temperatures

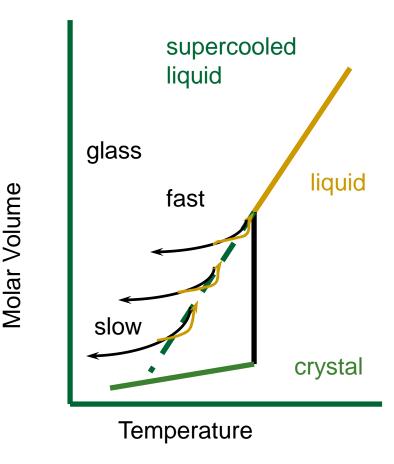
The Cooling Rate Affects the Properties of Glass

- Faster cooling freezes in the glass at a higher temperature
- The temperature is lowered so fast that the liquid does not have time to relax to the properties at the next lower temperature, glass is formed at a high temperature
- Slower cooling freezes in the glass at a lower temperature
- The temperature is lowered slowly enough that the liquids can relax to properties at lower and lower temperatures, glass is eventually formed at a lower temperature



Glass Properties on Heating

- If a glass is reheated, how do the properties change?
- Sketch a temperature plot for a glass that has been cooled at a average rate of 10°C/min and then is reheated at 10°C/min.
- How does the volume change upon reheating?
- Does it follow the same curve as the cooling curve?
- Does it follow a different path?


Glass Properties on Heating

- Liquid is "arrested" in the glassy solid state on cooling
- On reheating, the curve does not follow the same curve, as it would for a crystal
- Tg is higher on heating because of hysteresis
- The heating curve by-passes the cooling curve because the glass is frozen, it is "stuck" and does not want to change
- Soon above the Tg, however, the glass has the thermal energy necessary to become a liquid and the two curves rejoin

Glass Properties on Reheating

- Glasses arrested at progressively lower temperatures, the slower the cooling
- Tg decreases with decreasing cooling rate
- Slower cooling produces a lower Tg
- Faster cooling produces a higher Tg
- Tg is higher on heating because of hysteresis
- The heating curve by-passes the cooling curve because the glass is frozen, it is kinetically "stuck"
- Soon above the Tg, however, the glass has the necessary thermal energyto become a liquid and the two curves rejoin

