1. Sol-gel precursors undergo chemical reactions with water and with each other. To predict these reactions, one approach is the Partial Charge Model, based on electronegativities. The model predicts electrical interactions between the atoms or ions in the molecule. The electronegativity of the complex $X(C)$ is calculated according to:

$$X(C) = \sqrt{X_{Si}^0} + N\sqrt{X_{O}^0} + (2N-h)\sqrt{X_{H}^0} + 1.36(z-h)$$

and the partial charge δ_{Si} is calculated according to:

$$\delta_{Si} = \frac{X(C) - X_{Si}^0}{1.36\sqrt{X_{Si}^0}}$$

a. Using the electronegativities below and the values for N (coordination number = 4), z (valence/formal charge of Si = 4) and h (number of hydroxo ligands), calculate $X(C)$ for the following complex under basic conditions, where $h = 5$:

$$[Si(OH)_3]^- \quad X(C) = \ldots$$

b. Calculate the partial charge on Si, δ_{Si}, for the complex.

$$[Si(OH)_3]^- \quad \delta_{Si} = \ldots$$

c. If the partial charge on Si is > 0.3 the complex can dimerize (a polymer of 2 units) by condensation. Is this possible? (Yes or No)

$$2[Si(OH)_3]^- \rightarrow [Si_2O_4(OH)_3]^{3-} + H_2O$$
2. To emphasize the scaling for nanomaterials like colloidal silica:

a. Suppose we have 20 cm3 of silica in 1 cm radius droplets. Each has a volume of $(4/3 \pi r^3)$ ______ cm3 and a surface area of $(4\pi r^2)$ _____ cm2. As we need about _____ droplets we would have a total area of _______ cm2.

b. The same silica is split into 0.1 cm radius droplets. Each has a volume of $(4/3 \pi r^3)$ ______ cm3 and a surface area of $(4\pi r^2)$ _____ cm2. As we need about _____ droplets we would have a total area of _______ cm2.

c. Finally, the same silica is split into 100 nm radius droplets or colloids. Each has a volume of $(4/3 \pi r^3)$ ______ cm3 and a surface area of $(4\pi r^2)$ _____ cm2. As we need about _____ droplets we would have a total area of _______ cm2.

d. Make a plot of droplet volume vs radius. Superimpose a plot of droplet area vs. radius.

e. Make a plot of surface-to-volume ratio vs. radius.

f. Make a plot of total area vs. radius.

g. What do these plots tell you about what to expect from nanomaterials?