IMI-NFG Course on Processing in Glass

Spring 2015

(available online www.lehigh.edu/imi)

Lecture 3: Basics of industrial glass melting furnaces

Mathieu Hubert, PhD

CelSian Glass & Solar
Eindhoven, The Netherlands

mathieu.hubert@celsian.nl
Introduction
Introduction

Lecture 1
Raw materials

Lecture 2
Homogenization
-> Fusion Melting-in sand grain dissolution
-> Primary Fining
-> Secondary fining cooling

Lecture 3
Melting tank
-> Forming, using conditioned melt

Next IMI/NFG lectures

IMI-NFG Course on Processing of Glass - Lecture 3: Basics of industrial glass melting furnaces
mathieu.hubert@celsian.nl
Outline of this lecture

1. Glass melting furnaces
 - Furnace design (focus on continuous melting tanks)
 - Process steps
 - Furnace operation

2. Heat transfer

3. Refractories
Furnace types

- Different furnace types and designs exist, depending on the quantity of glass to be produced, the type of glass production, plus economic (and logistic) factors.

- The main types of furnaces include:
 - Pot furnaces (discontinuous)
 - Day tanks (semi-continuous)
 - **Recuperative / unit type melters**
 - **Cross-fired regenerative** furnaces – *throat or neck/waist design*
 - **End-port fired regenerative** furnaces – *throat design*
 - **Oxygen-fired** unit melters
 - Special (segmented) melter (LoNOx®, Flex® melters)
 - All-electric furnaces
Discontinuous furnace (day tanks and pot furnaces)

- The following actions take place (generally in a one-day cycle) within discontinuous melting furnaces:
 - Melting tank or pot is charged with mixed raw material batch
 - This batch is heated to the desired temperature
 - The glass is melted, fined, homogenized and subsequently cooled down to the working temperature to allow forming by the craftsman or semi-automatic machines taking portions (gobs) of glass from the glass melt pot.
Continuous glass furnaces

• Usual synonyms for a continuous furnace are **glass-melting tank** or **tank furnace**.

• These furnaces are applied for
 - Container glass production
 - Flat glass (Float & Rolled) production
 - Most tableware glass production
 - Fiber & glass wool production
 - Most specialty glass production (tubes, display glass, glass-ceramics, lighting bulbs,..)

• **These furnaces not applied for:**
 - Most hand-made glass
 - Vitreous silica
 - Optical glass fibers
Continuous glass furnaces characteristics

- Tank of refractory material, **continuously charged** with mixed batch
- **Heat transfer from combustion chamber** using fossil fuel (mostly natural gas) firing with preheated air or oxygen
- All basis process steps in **different zones** or sections of furnace
- Continuous operation, during campaigns 5-15 years
- Indefinite number of trajectories from batch charger to exit of furnace (throat or canal).
- These furnace types are suitable for the **mass production** of glass
- The furnace melting capacity (**glass pull**) usually is expressed in the number of (metric) tons of glass melted per day (24 hours)
- Depending on the furnace and type of glass produced, the pull can vary from ~ 20 tons per day (TPD) up to > 700 TPD
Continuous glass furnaces characteristics

- Within the melt, currents (glass melt flow patterns) are being generated, both by pull & by free convection
- Extra mixing by the application of **bubbling or electrodes**
- Possibility to **boost** energy input using **electrodes**
- Electric current in melt will release latent energy
- Large number of trajectories of material in tank: **wide residence time distribution & quality** differences depending on route
- **Temperature gradients** in melt: higher levels (close to the surface) are generally hotter than bottom glass melt
- Weirs or dams are optionally applied to bring bottom glass to upper glass melt layers
- Using air preheating (**regenerators/recuperators**) or pure oxygen
Continuous glass furnaces characteristics

A melting furnace consists of:

- **Melting tank** (glass melt bath)
- **Superstructure** (combustion chamber)
- **Throat** as connection between the melting end and the riser that brings the molten glass in the **refiner, working end or distributor**
- **Neck** in case of float glass production, between the melting end and working end
- **Working chamber** (working end, gathering end, nose, refiner)
- **Heat exchangers**: regenerators or recuperators
Continuous glass furnace components

Designations of glass furnace components (tank furnace, cross fired, dimension scale is not meant to be correctly presented).
Regenerative furnaces

• A regenerator consists of a **regenerator chamber** in which a **checkerwork** (or just **checkers**) of **refractory bricks** has been stacked.

• In one cycle the checker is heated up by flue gases, subsequently in the following stage (20-30 minutes) the heat is transferred to combustion air.

• These furnaces are provided with 2 or more (an even number) regenerators.

• In principle the optimum **half-cycle time** depends on the pull of the melting tank (**thermal load**).

• During the **burner reversal**, lasting about 30 - 60 seconds, there are no flames within the furnace.

• The reversal period (no-firing interval) should be as short as possible to avoid too much cooling down of the furnace.
Regenerative furnaces

Melting end, regenerative, cross section

Regenerative furnaces

Melting end

Fuel supply

Combustion air supply

Regenerator combustion air preheating

Flue gas to chimney

Regenerator flue gas heat recovery

Every 20 minutes reversal

12 m

20 m

IMI-NFG Course on Processing of Glass - Lecture 3: Basics of industrial glass melting furnaces

mathieu.hubert@celsian.nl
Cross-fired regenerative furnaces

- The regenerators are placed on the side of the furnace.
- The furnace can be equipped on both sides with 4 up to 8 burner ports (per side) depending on furnace size.
- The profile of heating (fuel distribution among the burners located along the sidewalls) determines location and size of the hot spot area (primary fining zone) in the glass melt.
End port-fired (or U-flame) regenerative furnaces

- Burners (2 to 4 burners at each port) and the regenerator chambers are connected at the back wall side of the superstructure.
- The combustion of fuel & preheated air from one regenerator chamber takes place: flames starting from the burner nozzles and extending almost over the length of the furnace.
- **Flame / Combustion direction turns at front wall**
- Less structural heat losses compared to cross fired regenerative furnaces (combustion gases have longer residence time)
Typical air-fired container furnace (source: SEPR)

- raw material
- batch
- combustion air preheating (regenerators)
- glass melt distribution feeders
Cross-fired furnace
Example flat glass furnace (source: SEFPRO)
Example end-port regenerative furnace (source: SEFPRO)
Recuperative furnaces

- Recuperators are used to pre-heat the combustion air
- The hot flue gases are sent through the recuperator to heat the combustion air

Picture from Sorg, report “Glass melting technology”, available online
Recuperative furnaces

- Recuperator: **heat exchanger** in which heat is transferred from the flue gases to the combustion air in co-current or in counter-current flow

- **Recuperative furnaces** are provided with one or two recuperators

- Most recuperators are made from high temperature resistant steels, like chrome nickel steel (or chromium-nickel-aluminum steels)

- Because heat transmission in this type of recuperators is based mainly on radiation, these heat exchangers are called **radiation recuperators**
Recuperative furnaces
Recuperative furnaces

• **Investment costs** are relatively low

• **No cycle** (firing reversal) system, therefore continuous process conditions

• Controllable temperature profile along the length, due to the large number of burners which might be controlled independently (5-15 burners per side)

• The furnace is easily accessible (also for an end-port fired regenerative furnace the side-walls can easily provided with peepholes)

• The combustion chamber has a relatively simple construction and it can be sealed reasonably well (no large burner port)

• **But**: preheating of the combustion air is less efficient than for regenerative furnaces
Oxygen-fuel fired furnaces (Oxy-fuel)

- The fuel is fired without nitrogen in the applied oxidant (pure oxygen) (lower volumes of flue gases, less diluted)
- In general, oxy-fuel glass furnaces have the same basic design as recuperative glass melters, with multiple lateral burners and a limited number of exhaust port(s).
- Most oxygen fired glass furnaces hardly utilise heat recovery systems to pre-heat the oxygen supply to the burners (there are some developments in oxygen and natural gas preheating using the heat contents of the flue gases)
- Burners positioned in special burner blocks in the sidewalls
- Typically only 4 to 6 burners per sidewall are installed.
- NB: Burners from opposite sidewalls are preferably not placed in one line. This would lead to instable flame tips influencing each other.
Oxygen-fuel fired furnaces (Oxy-fuel) (source: SEPR)
Oxygen-fuel fired furnaces (Oxy-fuel)

- **Doghouse**
- **Batch blanket**
- **Flue port**
- Staggered arranged oxy-gas burners
- **Throat**
- Optionally multiple exhaust ports

Temperatures:
- **1450 °C**
- **1600 °C**
- **1300 °C**
Oxygen-fuel fired furnaces (Oxy-fuel)

• **Advantages**
 ✓ cheaper furnace designs
 ✓ lower specific NOx emissions (in kg NOx/ton molten glass);
 ✓ smaller flue gas volumes
 ✓ smaller footprints for furnace system
 ✓ reduction in fuel consumption

• **Drawbacks**
 ✓ oxygen costs may exceed the reduction in fuel costs
 ✓ oxygen-firing require higher refractory quality superstructures
Melting tanks dimensions

Typical melting tank dimensions for continuous glass furnaces

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>8 – 40 m</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>5 - 15 m</td>
<td></td>
</tr>
<tr>
<td>Glass depth</td>
<td>0.6 - 1.8 m (deep refiner > 1.5 m)</td>
<td></td>
</tr>
<tr>
<td>Length/width ratio</td>
<td>1.25:1 - 5:1</td>
<td></td>
</tr>
</tbody>
</table>

Extension of tank for charging the raw material batch: **doghouse**
Summary / overview furnace types

<table>
<thead>
<tr>
<th>Furnace type</th>
<th>Glass type</th>
<th>Glass pull range (TPD)</th>
<th>Melting area Range (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regenerative cross fired</td>
<td>Float-glass</td>
<td>500 - 1000</td>
<td>300 - 400</td>
</tr>
<tr>
<td>(open connection to working end)</td>
<td>Container glass</td>
<td>100 - 600</td>
<td>20 - 200</td>
</tr>
<tr>
<td></td>
<td>TV-CRT glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lighting glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tableware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regenerative Cross fired</td>
<td>Container glass</td>
<td>100 - 400</td>
<td>50 - 140</td>
</tr>
<tr>
<td>(with throat)</td>
<td>TV-CRT glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lighting glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tableware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regenerative End port fired</td>
<td>Container Glass</td>
<td>100 - 400</td>
<td>50 - 140</td>
</tr>
<tr>
<td>(with throat)</td>
<td>Tableware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperative cross-fired</td>
<td>Fiber glass</td>
<td>20 - 400</td>
<td>15 - 140</td>
</tr>
<tr>
<td></td>
<td>Technical glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tableware</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Container glass (small)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxy-fuel (cross-fired)</td>
<td>Fiber glass</td>
<td>1 - 400</td>
<td>1 - 100</td>
</tr>
<tr>
<td></td>
<td>Technical & Special glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tableware</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass wool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Container glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Float Glass</td>
<td>500 - 800</td>
<td>250 - 400</td>
</tr>
</tbody>
</table>
All-electric melting

- The heating is not provided by combustion systems, but by electric energy provided by electrodes plunging in the melt
- Below is an example of an all-electric furnace with top electrodes (Sorg)

Pictures from Sorg, report “Glass melting technology”, available online

IMI-NFG Course on Processing of Glass - Lecture 3: Basics of industrial glass melting furnaces
mathieu.hubert@celsian.nl
Furnace superstructure

Melt tank and superstructure construction
Arrows indicate supports of superstructure by steel construction

- Silica crown
- ZrSiO$_4$
- AZS
- AZS sidewall blocks
- AZS bottom blocks
- Sidewall insulation
- Glass level
- Skewback
- Tuckstone
- Tank
- Superstructure

IMI-NFG Course on Processing of Glass - Lecture 3: Basics of industrial glass melting furnaces
mathieu.hubert@celsian.nl
Downstream glass melting tank

- Temperature of the glass melt, flowing from the **melting-end** through the throat into the **riser** and then into the **distributor/working-end/refiner**, is too hot for **forming**.

- Required cooling: by **refiner and feeders** by 200 to 300°C to approximately the working temperature.

- Glass portions or gobs or a continuous flow of glass at this lower temperature level are required for a well performing forming process.

Source: Sorg
Example of a feeder canal (container glass)

- **Heating** of relatively cold glass flowing **at the sides** and
- **Cooling** of glass melt flow **in center** axis of canal
Process steps
Process steps

- **Return flow for batch heating**
- **Generation blisters from refractory**
- **Refining Bubble absorption**
- **Conditioning of melt Thermal homogeneity**

Batch melting:
- 40-60 minutes
- 80-90% of net heat flux

Heat transfer:
- **Hot spot & evaporation**
- **Zone for sand grain dissolution**
- **Spring zone & primary fining**
- **Return flow from working end**

- **Melting** → **Primary Fining** → **Secondary Fining** → **Conditioning** → **Forming**
Process steps

- During melting of batch, new bubbles are generated
- Primary fining should start after last new bubble has been created
- During all stages of melting, fining and conditioning: homogenization
- For each process step, requirements have to be fulfilled with respect to local temperature, residence time and mixing characteristics
- This is not the only reason why the process steps preferably should be passed successively
 - During the melting process bubbles are generated
 - These bubbles can only be removed effectively from the melt by the fining process, when the fusion process has been completed and no new bubbles are being formed anymore at the interfaces non-dissolved raw material grains.
Process steps

Hot Spot Area
- Narrow range of Temp

Batch melting
- 40-60 minutes
- 80-90% of net heat flux

Process steps
1. **Melting**
2. **Primary Fining**
3. **Secondary Fining**
4. **Conditioning**
5. **Forming**
Flow patterns

• The **glass melt flow patterns** in glass melting tanks are decisive for the **residence times** and the exposure of the melt to sufficiently high temperatures for:
 ✓ Melting of batch
 ✓ Complete dissolution of sand grains
 ✓ Removal of gas bubbles
Heating and flows

- The melt is heated by gas or oil flames directed over the glass melt bath. Within the melt, glass melt flow patterns, are being generated, both by the pull & free convection.

- Free convection flow arises from density differences within the melt.

- Due to the temperature profiles, density differences are generated within the melt which will create free convection (density difference driven) flow.

- The free convection flow is generated on purpose in order to obtain enough mixing and homogenization and to avoid short cut flows.
Convections loops

Goal: force all the glass melt to the area with the highest temperature and to avoid a short cut flow in the melt tank.
Characteristic flows and temperatures

- Example CFD modeling of flow patterns in a continuous glass melting tank

Tendency for short cut flow!
Residence time

- Not all particles (notably sand grains) will have similar residence time inside the furnace
- To avoid defects, it is important to ensure that all particles remain in the furnace long enough to allow good dissolution and homogenization
- **Minimum residence time** is thus a very important factor for a good glass quality and homogeneity

Example: many different trajectories (paths) in tank
Residence time

This **minimum residence time** is the **shortest reaction time** of the glass product on changes in batch composition.
Heat transfer

- Example of a flame above the glass melt in a side-port regenerative furnace
Heat transfer

- The heat is transferred from the flames to the melt by radiation
- The flames also heat up the crown, which also radiates towards the melt
Redox of the glass and heat transfer

- The absorption in the **infrared** is very important for heat transfer
- The **redox state of the melt** (notably iron ratio Fe$^{2+}$ / Fe$^{3+}$) plays a major role in the amount of heat absorbed by the melt

![Graph showing absorption spectrum with UV, visible, and IR regions, and black bodies at 2000°C and 1500°C]
Temperature profile in the crown

Heat input into melt tank

Batch blanket

Hot spot

Spring zone

Melting tank

T-profile crown
Convection flows by temperature differences in the glass melt

Hot spot in position in the middle of the furnace

Hot spot at the end of the furnace, only one large loop is created (like in most U-flame furnaces)
Additional means to influence flows

- Besides adjusting the settings of the burners (fuel distribution) to modify the temperature profile in the melting tank, additional means can be implemented in the furnace to promote the flows.
 - These include:
 - Forced bubbling (via bubblers)
 - Electric boosting
 - Weirs/dams

- NB: the presence of foam on top of the melt may disturb the heat transfer from the flames to the melt.
Bubblers

- Bubbling improves the heat transfer by bringing the relatively colder glass melt from the bottom to the surface of the melt.
- In many cases, bubbling in the molten glass is applied in the melting tank, especially in the hot spot sections of the melting tank.
- Proper bubbler positioning and operation can improve the spring zone performance:
 - bringing the relatively cold bottom glass to the hot glass melt surface
 - preventing cold glass melt flowing along the bottom directly to the working end section
 - separation between melting-in zone and fining zone.
Electric boosting

- **Electrodes** in the melt can be applied to rise the glass melt to the surface
- Vertical electrodes positioned over the width of the melting tank, sometimes in combination with horizontal electrodes, are used to heat the glass melt by electric currents.
- The glass melt passing the zone with the electrodes is heated up at this position in the tank, and the decreasing glass melt density brings this melt to the surface area

- **NB:** Special precautions must be taken when using electrodes and/or bubblers: construction, material employed, oxidation, cooling systems for the electrode…
Weirs/dams

• The application of a weir (cross wall, flow barrier, dam) will influence the glass melt flow (mostly applied in the area of the hot-spot)

• This will force the cold bottom glass to move upwards over the weir to be heated and fined before leaving the melting tank

• Such a cross wall is subjected to severe wear (due to high temperatures in the top sections and due to high glass melt velocities)

• For improved fining, a longer weir or fining shelf is more efficient, exposing the glass melt for a longer time to a shallow tank depth.

Source: SEPR
Furnace equipped with boosters and bubblers

Pictures from CelSian

IMI-NFG Course on Processing of Glass - Lecture 3: Basics of industrial glass melting furnaces
mathieu.hubert@celsian.nl
Example – effect of boosting and bubbling

Pictures from CelSian
Foaming

- Due to the release of gas bubbles and certain lifetime of the bubbles at the glass melt surface, a foam layer may arise.

- Foaming is caused by degassing of the glass melt during fusion of the batch blanket (*primary foam*) and/or during fining process (*secondary foam*).

- Foam has a strong *insulation* effect.

- It prevents the radiative heat penetration from the combustion chamber into the melt.

- This is unfavorable for the fining process, because especially the primary fining process needs a high temperature.
Furnace control and sensors

Drawing of a cross fired glass furnace with indicative positions for temperature sensors (TT), gas concentration measurements (pCO, pO₂), glass melt / batch level (LT), pressure level (PT)
Emissions from glass furnaces

Important factors:

- Temperature of the glass melt surface
- Composition of the glass melt, especially the contents of volatile components
- Sodium sulfate added
- Composition of the furnace combustion atmosphere,
- Gas velocity at the melt surface
- Residence time of the glass melt in the furnace or the specific surface area of the melt
- Foaming of the glass melt
Evaporation processes are the main cause of fine dust emissions of most glass melting furnaces.

Example

Exhaust:

- N_2, O_2, H_2O, CO_2
- $NaCl$, $NaOH$, HCl, SO_2

During cooling:

- $2NaOH + 1/2O_2 + SO_2 \rightarrow Na_2SO_4 + H_2O$
- $2NaCl + H_2O + 1/2O_2 + SO_2 \rightarrow Na_2SO_4 + 2HCl$

- Flue gas particulates 0.03-0.5 μm

Combustion space

- $NaCl$, SO_2, $NaOH$, H_2O

- $Na_2O + H_2O \rightarrow 2NaOH$

- SO_2 bubbles

- Glass melt
Refractories
Refractories and furnace lifetime

• The furnace lifetime depends directly on refractory quality
• Lifetimes for melting tanks based on AZS fused cast (Alumina Zircon Silica) refractories
 - Container glass furnaces: 12 - 16 years*
 - Float glass: 14 - 18 years*
 - Tableware soda-lime-silica glass: 6 - 8 years

• Selection of appropriate refractories is crucial
 * Hot repairs included during campaign:
 - plates of AZS or Chromium oxide covering soldier blocks
 - repairs of open joints & holes with patch
 - ceramic welding by metal/metal oxide powder (oxytherm)
Refractory selection – General aspects

• Not only the **chemical composition**, but the **microstructure** and **macrostructure** of the material (grain sizes, binding phases) determine refractory behavior

• **Impurities** generally decrease the refractory quality

• For combustion chamber applications refractory (crown) temperatures may reach levels between 1550 and 1700°C (higher temperatures typically observed in furnaces for borosilicate glasses or glass-ceramics)

• The refractory materials, exposed to molten glass, are operated at about 1100-1550°C in most cases.

• In regenerators temperatures levels between 1550°C (at the top) and 500°C (at the bottom) can be observed
Refractory selection – General aspects

• Important factors to consider include:
 ✓ Temperature resistance and stability at high temperatures
 ✓ Thermal shock resistance (especially during first heating)
 ✓ Thermal expansion
 ✓ Thermal conductivity
 ✓ Mechanical resistance / Deformation under load
 ✓ Corrosion resistance (e.g. different behavior in acid or basic environments)
 ✓ Costs!
Application of refractories in melting furnaces

Example of cross section of cross fired regenerative furnace.
(supplied by Philips Lighting)
Bottom and sidewall of a furnace

Furnace walls are built up in different layers, in order to comply with the requirements of:

a) Corrosion resistance

b) Obtain the required temperature

c) Achieve sufficient thermal insulation
Refactory corrosion

• The selected refractory material should not react with the environment to which it is exposed.

• In contact with glass melt: hardly any parts of the refractory materials may dissolve or detach into the melt (resulting in inhomogeneity, cords, undesired colorization of the glass) & no reactions should occur, that create bubbles.

• Release of the gases trapped within the refractory should be limited by selecting refractory with low amounts of gaseous inclusions.

• Refractory materials in contact with molten glass should not contain nitrides or carbon impurities, the contents of polyvalent ions (Fe$^{3+}$/Fe$^{2+}$, Ti$^{4+}$/Ti$^{2+}$) should be low to avoid redox reactions and gas formation.
Corrosion of refractories

Example of corrosion of refractories at the metal line
Regenerator refractories

- The top layers of the checkers are exposed to high temperatures and carry-over.
- Volatile products from the cooling flue gases, originating from the glass melt, condense and are deposited on the surfaces of the checker work.
- Corrosion & damage to porous refractory is often severe, due to repeated solidifying & melting of the sodium sulfate.
- Dust (from carry-over of sand, glass dust, dolomite, limestone, or condensed material) can be captured in the top layers of the checkers.
- Avoid corrosion problems by the selection of refractory materials.
Examples of refractory corrosion mechanisms

Process of silica attack and breast wall corrosion by alkali silicate run down

- Attack of silica by alkali vapors (NaOH)
- Run down of alkali silicate melt
- Formation of alkali-alumino-silicate slag with some dissolved ZrO$_2$

Diagram showing:
- Silica crown
- Superstructure
- ZrSiO$_4$
- AZS
- AZS sidewall blocks
- AZS bottom blocks
- Sidewall insulation
- Glass level
- Tank

Examples of refractory corrosion mechanisms:
- Silica crown
- ZrSiO$_4$
- AZS
- AZS sidewall blocks
- AZS bottom blocks
- Sidewall insulation
- Glass level
- Tank
Effect of metals contamination on furnace lifetime

- Metal (such as lead) may form drops which fall at the bottom of the furnace and provoke accelerated corrosion. This is called downward drilling.
Conclusions – 1/2

• A continuous glass melting tank is designed to ensure a series of processes (melting, fining, homogenization…) essential for the quality of the glass produced

• **Minimum residence time** of the particles (from the batch) is crucial

• Good homogenization is directly dependent on the convection flows in the melting tank, shortcuts should be avoided

• **Different designs** of continuous furnaces exist (cross-fired or end-port fired regenerative, recuperative, oxy-fuel, all-electric…), and the choice depends notably on the type of glass produced

• Good heat transfer from the combustion chamber (flames) to the melt is essential. Once again, **redox** plays a major role in the absorption behavior of the glass melt
Conclusions – 2/2

• Several strategies can be applied to promote convection flows in the furnace (adjustment of fuel distribution, weirs, bubblers, boosting…)

• The lifetime of a furnace is highly dependent on the quality of the refractories used

• Refractory corrosion may be particularly detrimental to the furnace lifetime

In this lecture, we reviewed the processes happening in the melting tank, up to the working end, where glass is “conditioned” to present the best properties (homogeneity, absence of defects, temperature/viscosity) for the forming process (may it be for bottles, plate glass, fibers…)

These aspects will be presented during this IMI/NFG Spring 2015 course on Glass Processing
Home assignment

- A multiple choice questionnaire (MCQ) including questions on industrial glass melting tanks, process steps and refractories is provided with this lecture.

- The MCQ will be available online on IMI’s website.
References and further reading

• Glass Technology journals (e.g. Eur. J. of Glass Science and Technology)

• NCNG’s Glass Technology course and handbook 2013

• Proceedings of GlassTrend meetings and seminars (www.glasstrend.nl)

• Proceedings of “Glass Problem Conferences” (Wiley, every year)

• Youtube video: Production of Glass Bottles - How it's made
Thank you for your attention

Questions?

Visit us in Eindhoven

Contact me via email:

mathieu.hubert@celsian.nl