Multiple Choice Questions – Lecture 1

Only one answer per question is correct!!

- 1. Mention three network modifiers of oxide glasses:
 - a. Na_2O , CaO, B_2O_3
 - b. K₂O, Al₂O₃, Li₂O
 - c. K_2O , CaO, Na₂O
 - d. B_2O_3 , Na_2O , SiO_2
- 2. The color of a glass is mainly determined by:
 - a. The network modifying ions in the glass
 - b. Multivalent ions in the glass, which have specific absorption bands in the visible spectrum. The glass has the same color as the absorbed light
 - c. Multivalent ions in the glass, which have specific absorption bands in the visible spectrum. The glass color corresponds to the complementary wavelengths, not absorbed by the glass
- 3. The presence of the following ions have a large effect on the color of glass
 - a. Na⁺ ions
 - b. Ca^{2+} ions
 - c. Fe²⁺ions
 - d. K⁺ ions
- 4. Which physical property of the raw material powders should be controlled in particular for obtaining an homogeneous batch, after mixing and transport to the furnace
 - a. Density of the powder particles
 - b. Grain size distribution of the powders
 - c. Surface roughness of the particles
 - d. Shape of the powder particles
- 5. The weight percentage of external cullet in raw materials batches
 - a. May never exceed 50%
 - b. Can be as high as 90%
 - c. Is very high in float glass and glass wool production
 - d. Is very low in container glass production
- 6. A LCD glass producer must select a type of boron raw material for its production. Which type of raw material should he select among:
 - a. Boric Acid (H₃BO₃)
 - b. Borax ($Na_2B_4O_7-10H_2O$)
- 7. The amber color of beer bottles (amber glass) is caused by:
 - a. Cokes dissolved in the glass
 - b. Reduced iron species in the glass (Fe^0 and Fe^{2+})
 - c. Presence of sulfide (S^{2-}) and ferric iron (Fe^{3+}) in the glass
 - d. Colloidal coloring by very small gold particles dispersed in the glass?

- 8. Why is a temperature above 35.4°C preferred for preparing (mixing) a soda-lime-silica raw material batch:
 - a. Below this temperature, the soda is chemically very reactive and corrosive
 - b. Below this temperature, the batch shows a too high apparent viscosity (batch is difficult to transport)
 - c. Below this temperature, the batch will absorb CO_2 from the ambient atmosphere;
 - d. Below this temperature, soda will absorb water from the batch and forms hydrated soda and starts to form lumps
- 9. The redox state of the glass is mainly determined by:
 - a. Temperature of the furnace;
 - b. Presence of organic materials in the raw material batch
 - c. Amount of sand in raw material batch
 - d. Amount of soda in raw material batch;
 - e. Type of furnace
 - f. Residence time in furnace
- 10. What type of sand is generally preferred in container or float glass production:
 - a. A very fine sand, because it will decrease the required melting time';
 - b. A very coarse sand, it will prevent carry-over and dusting;
 - c. A sand with wide sand grain size distribution to have advantages of fine sand and coarse sand;
 - d. A sand with a narrow sand grain size distribution, no very fine and no coarse sand grains.

Extra exercise: Calculation of a batch

% oxide (wt%)	SiO ₂	B ₂ O ₃	Na ₂ O	K ₂ O	CaO	MgO	Al ₂ O ₃	SO ₃	Fe ₂ O ₃
Sand	99.95								0.05
Boric acid*		56.3							
Soda Ash (Na ₂ CO ₃)*			58.5						
Dolomite* (xCaCO ₃ .yMgCO ₃)					30.5	21.5			
Alumina							100		
Sodium sulfate (Na ₂ SO ₄)			43.7					56.3	
Potash (K ₂ CO ₃)*				68.0					

A glass producer wants to produce a sulfate-fined borosilicate glass, using the dry raw materials with the oxide contents described below (composition given in mass %, or wt%).

* the remainder to 100 wt% corresponds to melting losses (CO₂ or water)

The quantities of each raw material used by the producer to prepare his industrial batch are the following (NB: this batch recipe does not correspond to an actual composition used in the industry, it was randomly chosen for this exercise):

- Sand: 1000 Kg
- Boric Acid: 200 Kg
- Soda Ash: 120 Kg
- Dolomite: 200 Kg
- Potash: 20 Kg
- Alumina: 20 Kg
- Sodium sulfate: 7 Kg

Assuming that the sulfur retention in the glass melt is 50% (50% of the sulfur is lost during the fining process), calculate the composition of the glass obtained after melting of this batch.