At noon Jan. 04, 2013 in Nagaoka
Glass-ceramics for the Innovative Secondary Batteries

Tsuyoshi Honma

Nagaoka University of Technology
Focusing on the crystallization phenomena to produce functional glass products in non-conventional oxide glass system.

http://mst.nagaokaut.ac.jp/amorph/en
Focusing on the crystallization phenomena to produce functional glass products in non-conventional oxide glass system.
We are focusing about

LiFePO$_4$
for Li-ion batteries

J. E. Chem. Soc. 144, 1188(1997) cited 3563

Na$_2$FeP$_2$O$_7$
for Na-ion batteries
reported at first by us (2012)
1. Introduction
 • About Li-ion batteries
 - advantages and the problems
 • Typical cathode active materials
 • Iron phosphate base LiFePO₄
2. Glass-ceramics for LiB
 • Sample preparation
 • Properties
3. Sodium ion batteries (NaB)
 • New cathode candidate Na₂FeP₂O₇ by glass-ceramics method
 • Battery performance
4. Conclusion
Lithium ion batteries

Recently, high capacity batteries are required for EV, PHEV and stationary use in residential.

In residential

~12kWh/day
XEVs

HV

Plug-in HV(PHV)

TOYOTA priusPHV, 4.4kWh

Plug-in HEV(PHEV)

TOYOTA prius, 1kWh

MITSUBISHI outlander, 12kWh
XEVs

Pure EV

NISSAN LEAF, 24kWh

Tesla Model S, 85kWh

MITSUBISHI iMIEV, 10.5-16kWh
Structure of Li ion battery

Type 18650 for mobile use

Cu foil anode Li\(^+\) cathode Al foil

Discharge: Li+ moves from cathode to anode

Charge: Li+ moves from anode to cathode

Cathode: LiCoO\(_2\) transition metal oxides
Anode: Carbon black
Collector: Al foil for cathode
Cu foil for anode
Breakdown of Materials cost

- Cathode: 52%
- Anode: 19%
- Separator: 13%
- Electroyte: 11%
- etc.: 5%

Materials cost is dominated by electrode.

We need valuable materials with cheap price.

Co$_3$O$_4$
LiCO$_3$
Al foil

http://www.jst-lcs.jp
Typical cathode structure

- **Rock salt type**
 - (LiCoO$_2$, LiCo$_{1/3}$Ni$_{1/3}$Mn$_{1/3}$O$_2$)

- **Spinel type** (LiMn$_2$O$_4$)

- **Olivine type** (LiFePO$_4$)

Comparison:
- Olivine: strong insulator with poor electrical conductivity and stability
- Spinel: moderate stability and electrical conductivity
- Rock salt: poor conductivity and stability
Olivine type LiFePO$_4$
A new cathode material without using cobalt oxide
Low cost
High theoretical capacity
170mAh/g
Redox potential
\sim3.5V
Poor electrical conductivity
$\sigma_{elec}\sim10^{-9}$Scm$^{-1}$
$\sigma_{ion}\sim10^{-11}$Scm$^{-1}$
Conventional: Solid-state, sol-gel, hydrothermal method etc.

LiCoO$_2$ (in use)
Li conduction is allowed along 1D axis

Long processing time, High-cost reagents, and Complicated process

Our group has applied a Glass-Ceramics processing
Simple process and cheap reagents
Olivine type LiFePO$_4$
A new cathode material without using cobalt oxide

- Low cost
- High theoretical capacity: 170mAh/g
- Redox potential: ~3.5V
- Poor electrical conductivity: $\sigma_{\text{elec}} \sim 10^{-9}\text{Scm}^{-1}$
- Poor ionic conductivity: $\sigma_{\text{ion}} \sim 10^{-11}\text{Scm}^{-1}$

Conventional: *Solid-state, sol-gel, hydrothermal* method etc.

- Long processing time
- High-cost reagents
- Complicated process

Our group has applied a *Glass-Ceramics processing*

Simple process and cheap reagents
Glass-Ceramics (GC) processing

Li$_2$O-FeO-P$_2$O$_5$-Nb$_2$O$_5$
K. Hirose et al.

Addition of Niobium Oxide
Double Al$_2$O$_3$ crucible + carbon

Li$_2$O-Fe$_2$O$_3$-P$_2$O$_5$
T. Honma et al.

Melting in air is available
Cheap Fe$_2$O$_3$
Fe$^{2+}$/Fe$^{3+}$ mixed valence
i.e. Fe$^{3+}$/Fe=0.86
Reduction during crystallization

Cathode materials in the batteries are used as fine powders
Precursor glass prepared by melt quenching is bulk plate
Preparation of glass

In 1200°C air

\[\text{LiPO}_3 + \text{Fe}_2\text{O}_3 \]

quenching

\[\text{LiFePO}_4 \text{ precursor glass} \]
Preparation of Glass-Ceramics
Preparation of Glass-Ceramics

1. Millling
Preparation of Glass-Ceramics

1. Millling

2. Screening
Preparation of Glass-Ceramics

1. Millling
2. Screening
3. Addition sugar (5-10%)
Preparation of Glass-Ceramics

1. Millling
2. Screening
3. Addition sugar (5-10%)
4. Baking (700°C)

LFP Glass Powder
Preparation of Glass-Ceramics

1. Millling
2. Screening
3. Addition sugar (5-10%)
4. Baking (700°C)

LFP Glass Powder
Thermal property

Thermal property depends on valence state

Fe$^{2+}$/(Fe$^{2+}$+Fe$^{3+}$) = 0.87

Fe$^{2+}$/(Fe$^{2+}$+Fe$^{3+}$) = 0.8

Fe$^{2+}$/(Fe$^{2+}$+Fe$^{3+}$) = 0.31

Ratio Fe$^{2+}$ ions vs total Fe in glass
Glass formation tendency

Thermal stability (ΔT) of precursor glass

$\Delta T = T_c - T_g$

- Fe$^{3+}$ rich 4-coordination
- Fe$^{2+}$ rich 6-coordination
Glass formation tendency

Thermal stability (ΔT) of precursor glass

$\Delta T = T_c - T_g$

- $\Delta T / ^\circ C$
 - 150
 - 125
 - 100
 - 75
 - 50
- 0 to 1
- $\text{Fe}^{2+} / (\text{Fe}^{2+} + \text{Fe}^{3+})$
- Fe^{3+} rich
 - 6-coordination
- Fe^{2+} rich
 - 4-coordination
effect of sugar addition

Li₃Fe(III)₂(PO₄)₃

T.Honma et al., JNCS 356 3032 (2010)
HR-TEM image

350°C

HR-TEM image

Carbon coating

LiFePO₄

LiFePO₄

surface

By EDS

Amorphuos phase

C, Fe, P, O

2 nm
Crystallization mechanism

- At 350°C:
 - LFP glass
 - Fe^{3+}-rich

- At 700°C:
 - LiFePO$_4$
 - Fe^{2+}-rich site
 - Amorphous

One pot reaction:
- Reduction of Fe^{3+}
- Crystallization
- Carbon coat

References:
Preparation of LiB Cell

LFP:CB:PvDF=85:10:5

electrolyte
EC:DEC=1:1
1M LiPF$_6$

application

dry

press

punching

anode

stainless cell

Li foil

cathode

separator

electrolyte

cathode
Battery performance of LiFePO$_4$ glass-ceramics

Discharge curve

Cycle performance

Rate performance

LiFePO$_4$ Glass-Ceramics

- **Materials cost**
 Inexpensive materials are able to use
 ex) LiPO$_3$, Fe$_2$O$_3$

- **Production cost**
 Short time melting (<30min)
 and crystallization (~2h)
 Simultaneous carbon coating process

- **Battery performances**
 Much better than that made by solid state reaction
Sodium ion batteries (NaB)

Why NaB?
Minor metals for Lithium ion batteries

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	H																		
2	Li	Be																	
3	Na	Mg																	
4	K	Ca																	
5	Rb	Sr	Y	Zr	Nb	Mo		Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
6	Cs	Ba	*1	Hf	Ta	W	Re		Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	Fr	Ra	*2	Rf	Db	Sg	Bh		Hs	Mt	Ds	Rg							

- **for cathode**
- **for anode**
- **for collector**

• depends on many kinds of minor metals

*1 La Ce Pr Nd Pm Sm Eu Gb Tb Dy Ho Er Tm Yb Lu

*2 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Mining of Lithium resources

Major producing country

Chile、Bolivia、China

http://diamond.jp/articles/-/7534
Lithium resources are enough?

Problems in huge size LiB

Safety performance, Lifetime
Hard to keep quality as 18650 type cell
Non-toxic materials must be use to avoid trouble

Total costs
18650 type: 400～500$/kwh
Laminate type: 800～1000$/kwh
Target <300$/kWh

Resource
By use of minor metals, cost cut is difficult
Lithium and Sodium

<table>
<thead>
<tr>
<th></th>
<th>Lithium</th>
<th>Sodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposits</td>
<td>maldistribution (20ppm)</td>
<td>infinite</td>
</tr>
<tr>
<td>Ion radius</td>
<td>60pm</td>
<td>95pm</td>
</tr>
<tr>
<td>Weight</td>
<td>6.9g/mol</td>
<td>22g/mol</td>
</tr>
<tr>
<td>Voltage vs SHE</td>
<td>-3.03V</td>
<td>-2.7V</td>
</tr>
</tbody>
</table>

Sodium ion Batteries

High energy density batteries with low cost

It must be

- good sodium ion conduction
- safe than LiB
Typical cathode structure

- **Rock salt type**
 - \(\text{LiCoO}_2, \text{LiCo}_{1/3}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{O}_2 \)

- **Spinel type** (\(\text{LiMn}_2\text{O}_4 \))

- **Olivine type** (\(\text{LiFePO}_4 \))

Properties
- **Olivine**
 - Insulator
 - Strong
 - Good electrical conductivity

- **Spinel**
 - Stability
 - Weak
 - Good conductivity

- **Rock salt**
 - Insulator
 - Strong
 - Weak stability

Chemical Formulas
- LiCoO₂, LiCo₁/₃Ni₁/₃Mn₁/₃O₂
- LiMn₂O₄
- LiFePO₄
Typical cathode structure

- Rock salt type:
 \(\text{LiCoO}_2, \text{LiCo}_{1/3}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{O}_2 \)
- Spinel type:
 \(\text{LiMn}_2\text{O}_4 \)
- Olivine type:
 \(\text{LiFePO}_4 \)

- Properties:
 - Olivine: strong insulator, good electrical conductivity
 - Spinel: stability, weak electrical conductivity
 - Rock salt: weak electrical conductivity, strong insulator
Problem in NaMO₂ rock salt

NaFeO₂[1], NaMnO₂[2], NaNi₀.₅Mn₀.₅O₂[3], NaCrO₂[4]…

Good electronic conductivity, however...

- Chemical durability is much poor
- Safety: not tested
- Thermal stability: not tested

NaMnO₂

NaCrO₂

Cathode candidate in Na$_2$O-Fe$_2$O$_3$-P$_2$O$_5$ system

glass formation region taken by INTERGLAD7
Cathode candidate in Na$_2$O-Fe$_2$O$_3$-P$_2$O$_5$ system

- NaFeIIIP$_2$O$_7$
- Na$_3$FeIII$_2$(PO$_4$)$_3$
- Na$_4$FeII$_3$P$_4$O$_{15}$

Glass formation region taken by INTERGLAD7
Fabrication of new cathode candidate by glass-ceramics method in the system Na$_2$O-Fe$_2$O$_3$-P$_2$O$_5$

- It must contain M$^{2+}$
- carbon coat

We found new crystalline phase around Na:Fe:P=2:1:2

Focus on Na:Fe:P=2:1:2 (Na$_2$FeP$_2$O$_7$)
- crystallization behavior
- electrochemical properties
Experiments

【Glass preparation】
Starting reagents (NaPO₃, Fe₂O₃)

1. mix
2. melt
3. cast
4. milling

玻璃粉末

【Fabrication of Na₂FeP₂O₇/C composite】

glass powder: 90%
glucose 10%

crystallization
620°C, 3h Ar-H₂

Na₂FeP₂O₇/C composite

Advantages
- Fe₂O₃ is available as raw materials
- Operation under air conditions

【Characterization】
Red-ox titration, TG-DTA, XRD
SEM, STEM-EDS, Battery testing
Thermal properties

DTA curve in Air heating: 10K/min

Precursor Glass

$\text{Na}_2\text{FeP}_2\text{O}_7$

T_p: 580°C

Fe$^{2+}$/ΣFe = 9.1%

T_g: 451°C

T_m: 930°C

Fe^{2+}/ΣFe = 9.1%
XRD pattern for glass and GC

Patterns are similar to Na$_{3.12}$Fe$_{2.44}$(P$_2$O$_7$)$_2$

precursor glass
Fe$^{2+}$/ΣFe=9.1%

Glass-ceramics(620°C, 3h)
Fe$^{2+}$/ΣFe=96.2%

Na$_2$FeP$_2$O$_7$
Simulated pattern

θ (deg.)

a=0.640nm, b=0.938nm, c=1.097nm,
α=64.53°, β=86.05°, γ=73.06
New cathode candidate Na$_2$FeP$_2$O$_7$

3-dimensional network from P$_2$O$_7$ and FeO$_6$
Morphology of GC/C composite

precursor

glass-ceramics(620°C, 3h)

size distribution

0.01 0.1 1 10 100 500

0 2 4 6 8 10

Size distribution (%)

Grain size (µm)

Accumulation (%)
morphology of GC grain

Na$_2$FeP$_2$O$_7$ crystal

NFP grains are covered with amorphous carbon
Water durability

Under room temperature soaked powder sample (1g) in water (100ml)

pH of Water : 7.7

<table>
<thead>
<tr>
<th></th>
<th>precursor</th>
<th>Na$_2$FeP$_2$O$_7$/C</th>
<th>NaFeO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH after 17h</td>
<td>9.17</td>
<td>9.93</td>
<td>13.17</td>
</tr>
<tr>
<td>Color of solution</td>
<td>transparent</td>
<td>transparent</td>
<td>brown</td>
</tr>
</tbody>
</table>

Water durability is much higher than that of NaFeO$_2$
Charge-discharge profile (0.1C, 1-10times)

Rate: 0.1C (0.02 mA/cm²)
Anode: Na metal
Electrolyte: 1M-NaPF₆/EC:DEC
Cut-off: 3.8V-2.0V

Na₂FeP₂O₇ ↔ NaFeP₂O₇ + Na⁺ + e⁻

theoretical 97 mAh/g
Rate performance

253Wh/kg
Capacity after 50 times: 96%

Voltage (V)

Capacity (mAh/g)

Cathode candidate for NaB

Na$_2$FeP$_2$O$_7$
2.5-3.2V, 97mAh/g
Electron distribution in Na$_2$FeP$_2$O$_7$

Na$_2$Fe$^{(II)}$P$_2$O$_7$ \rightarrow NaFe$^{(III)}$P$_2$O$_7$ + Na$^+$ + e$^-$

$a=0.640\text{nm}$, $b=0.938\text{nm}$, $c=1.097\text{nm}$,
$\alpha=64.53^\circ$, $\beta=86.05^\circ$, $\gamma=73.06^\circ$

by WIEN2k
Conclusion

Fabrication of Na$_2$FeP$_2$O$_7$ glass-ceramics for rechargeable sodium ion battery

1. Triclinic Na$_2$FeP$_2$O$_7$ was formed by reduction heat-treatment.
2. Na$_2$FeP$_2$O$_7$ grains are covered with amorphous carbon layer, which assists electronic conduction in materials.
3. The reaction is expressed as

$$\text{Na}_2\text{FeP}_2\text{O}_7 \leftrightarrow \text{NaFeP}_2\text{O}_7 + \text{Na}^+ + \text{e}^-$$
Cut down Mat. Costs

vs 18650 type (%)
Thank you for your attention