A general introduction for the use and needs of TCMs

Functional Glasses Siracusa, Sicily, January 6-11 2013

> D. Lamine, Thin film department Saint-Gobain Recherche

SAINT-GOBAIN

RECHERCHE

Agenda

- Presentation of Saint-Gobain and Saint-Gobain Recherche
- Introduction / Applications we are addressing with TCM
 - How TCM can functionalize glass ?
 - Physical principles
 - Applications in building and automotive
- Transparent electrodes for active glazing
- Summary

Saint-Gobain, one of the world's top one hundred leading industrial corporations

Saint-Gobain, proud of its history

The origins of a multinational company

SAINT-GOBAIN and **Glass**

permission of Saint-Gobain Rech

s prohibit

production without prior writte

CONFIDENTIAL - Disclosure or

Research & Innovation

SGR in charge of key competencies

GLASS

- Products: Flat glass, fibers, bottles, glass ceramics...
- Process: Melting, forming, spinning
- Driver: Emission reduction, energy consumption

SURFACES

- Products: Building, automotive, Photovoltaic, lighting
- Process: CVD, PVD, sol gel

AL - Disclosure or reproduction without prior written permission of Saint-Gobain Rec

• Driver: Building energy performance, renewable energy

BUILDING MATERIALS

- Products: Polymers, gypsum, cement, mortar
- Process: Drying, curing, coating
- Driver: Cost reduction, energy saving

HABITAT

- Products: Virtual reality
- Driver: Thermal efficiency and comfort

SGR: Place for exchanges

CONFIDENTIAL - Disclosure or reproduction without prior writt

Attractive place for talented researchers

ion of Saint-Gobain Red

• Scientific disciplines represented at SGR

Agenda

- Presentation of Saint-Gobain and Saint-Gobain Recherche
- Introduction / Applications we are addressing with TCM
 - How TCM can functionalize glass ?
 - Physical principles
 - Applications in building and automotive
- Transparent electrodes for active glazing
- Summary

Transparent conductive materials as a way to improve...

ion of Saint-Gobain Rec

Heat preservation

CONFIDENTIAL - Disclosure or reproduction without prior written

Sun management

Safety and Comfort

Transparent electrodes...

Windows reinforced thermal insulation: principles Thermal transfert coefficient U

Heat quantity passing through a surface unit for a ΔT of 1K $\frac{1}{U} = \frac{1}{h_1} + \frac{1}{h_1} + \frac{1}{h_1}$ (EN 00673) h_e h_t h_i . h_e: External superficial thermal exchange coefficient (convective, depend on wind) around 20 W.m⁻².K⁻¹ . h_i: Internal superficial thermal exchange coefficient, Exterior Interior (convective and radiative) U . h_{conv} is around <u>4 W.m⁻².K⁻¹</u> $\mathbf{h}_{i} = \mathbf{h}_{r} + \mathbf{h}_{conv}$. For bare glass, $h_r \approx 5 \text{ W.m}^{-2} \text{.K}^{-1}$ h_{t} : thermal conductance of the glazing unit. For a sheet of glass of 4 mm thickness , $h_t = 250 \text{ W}.\text{m}^{-2}.\text{K}^{-1}$

> To increase the thermal insulation, we need to decrease U, and thus h_i and h_t

In a **double glazing**, thermal transfers are linked to

- →The gas nature
- →The gap thickness

In a bare double glazing, the thermal transfer is related to the radiation at 70%

Thermal insulation: low emissivity glazing

on of Saint-Gobain Re

Low emissivity > lower radiation transfer

eproduction without prior writt

- Disclosure or

A **low emissive layer** is added which is reflective in the far IR and highly transparent in the visible

Improvement of thermal insulation of glazing:

Emissivity is leading us back to conductivity, thus to TCMs

At $\lambda > 3 \mu m$, glass is opaque, thus emissivity $\varepsilon(\lambda) = 1 - R(\lambda)$

Drude and Maxwell equations give us:

$$n^{2}-k^{2} = 1 - \frac{\omega_{p}^{2}\tau}{\omega(1+\omega^{2}\tau^{2})} \qquad 2nk = \frac{\omega_{p}^{2}\tau}{\omega(1+\omega^{2}\tau^{2})}$$

• The reflectivity of a metallic layer is:

$$R = r^{2} \frac{\left|1 - \exp(i\alpha N)\right|^{2}}{\left|1 - r^{2} \exp(i\alpha N)\right|^{2}} \qquad r = \frac{n + 1 + ik}{n - 1 + ik}$$
$$N = n + ik$$

$$R = 1 - \frac{4\varepsilon_0 c}{e} \frac{1}{N_e d\mu} = 1 - \frac{4\varepsilon_0 c}{R/sq}$$

Independent of
$$\lambda$$

 ε (%) = 1.06×*R*/sq

Low e with TCO and metallic TCC

ion of Saint-Gobain Rec

- Transparent, oxide conductors (TCO)
 - SnO_2 : F, ZnO: Al, In_2O_3 : SnO_2 (ITO) ...
 - CVD, PECVD, sputtering, ALD, ...
 - Robust (for some)

AL - Disclosure or reproduction without prior write

- Relatively easy to coat
- Hot treatment necessary to achieve low conductivities

Transparent coating systems with metallic conductors (TCC)

- Ag, Nb, Mo, ..., embedded in an anti-reflective coating system
- Sputtering
- Very small, specific resistivity even with a coating on a cold substrate

Corrodible

- n-oxide semiconductor
- Relatively thick layers are necessary in order to increase conductivity
- R/square > 5 ohms

We use the transparency of the TCO when $\omega > \omega_p$ (in the visible) and reflective in the far infrared ($\omega < \omega_p$)

100

50

[,R,A(%)

Metallic conductors (TCC)

- High electron density, very good conductivities
- Very thin layers
- High reflectivity: Antireflective interference coatings are required

Transm.

1.2

μm

-Visible

Absor

Refl

2.0

 $\omega < \omega_p$, metal is always reflective:

A very thin layer (~skin depth) transmit partially the light. Finally, we need a metal that transmit more in the visible than in the IR...

Principle of silver thin films IR reflection

For TCC-Ag : Anti-reflection in the visible

Silver is encapsulated between two dielectric layers

What are the low-e layers requirements?

on of Saint-Gobain Re

The lowest emissivity as possible

eproduction without prior writt

- Disclosure or

Transparent in the visible + near infrared

Solar radiation: 45% Near IR

Low emissive glass = transparent in the NIR

Measuring sun's input energy: the g-value

roduction without prior writ

ar management

... but it may become also too hot

Solar control solutions

production without prior wi

Disclosure or

of Saint

....Performance is the energy balance between heat loss and solar heat gain

GLAZINGS BECOME MORE ENERGY EFFICIENT THAN WALLS!

Triple Glazed units with high solar factor are more energy efficient than walls, also on North orientation!

The same solar input management is possible for cars

The solar energy input into the car is done primarily through the glazing

TCC for low-e coatings: Anti-condensation Condensation becomes an issue for high performance insulating glazing units - DGU and TGU

Requirements for TCM ?

Coating inside insulated glazing

- Coating is well protected against chemical or mechanical stress but should be compatible with all the tranformation steps
- Metal coating systems achieve very low emissivities and with controled selectivity

Coating outside insulated glazing

- Coating must be chemically and mechanically stable (sometimes versus bending and tempering)
- Metal coating systems are either not chemically stable (Ag), very expensive (Au) or have a low conductivity
- Using a TCO is required

Agenda

- Presentation of Saint-Gobain and Saint-Gobain Recherche
- Introduction / Applications we are addressing with TCM
 - How TCM cab functionalize ?
 - Physical principles
 - Applications in building and automotive
- Transparent electrodes for active glazing
- Summary

Transparent electrodes for active glazings

- Accumulated experience on TCC use and issues enabled us to use them for active system as electrodes. They assume different roles with different characteristics :
 - Joule effect

• Charge injection/collection

Polarization

Example of Joule effect : To solve the automotive glazing icing problem: heat the glass (SG ClimaCoat)

- Windshield (WSS) with a transparent conductive coating
- Coating is highly selective:
 - heat reduction in summer
- WSS can be heated by the coating (14V power port)
- Rapid de-icing and fogging

without

with

Electrodes needs:

highly conductive, highly transparent (including in the near infrared), chemically stable

Injection/Collection: Electrodes for PV-CIGS

ion of Saint-Gobain Rec

CIGS

AL - Disclosure or reproduction without prior writt

TCO are used as top electrode:

- Need of high transparency in the absorption region of the absorber
- Relatively good conductivity (to avoid ohmic drops)
- Good durability
- Cost...

without prior

oduct

Diffusing...

Electrodes needs: moderate conductivity, highly transparent (no haze), chemically stable...

production without prior wr

Not diffusing...

Summary

- Significant reduction of energy consumption for heating or cooling (thereby reducing the CO2 production) by fubctionalizing glass surfaces with transparent conductive material, either TCC or TCOs
- TCOs (ex SnO2:F) are used, especially when coating is not protected and emissivities required are not too low
- TCM systems can be design as electrodes and adapted to meet product specifications : durability / process / transformation...

Conclusion: Table of merit

No TCM is perfectly fitted for every application !

Thank you

0

Disclos